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Abstract: We formulated and analyzed a class of coupled partial and ordinary differential equation
(PDE-ODE) model to study the spread of airborne diseases. Our model describes human populations
with patches and the movement of pathogens in the air with linear diffusion. The diffusing pathogens
are coupled to the SIR dynamics of each population patch using an integro-differential equation. Sus-
ceptible individuals become infected at some rate whenever they are in contact with pathogens (indirect
transmission), and the spread of infection in each patch depends on the density of pathogens around
the patch. In the limit where the pathogens are diffusing fast, a matched asymptotic analysis is used to
reduce the coupled PDE-ODE model into a nonlinear system of ODEs, which is then used to compute
the basic reproduction number and final size relation for different scenarios. Numerical simulations of
the reduced system of ODEs and the full PDE-ODE model are consistent, and they predict a decrease
in the spread of infection as the diffusion rate of pathogens increases. Furthermore, we studied the
effect of patch location on the spread of infections for the case of two population patches. Our model
predicts higher infections when the patches are closer to each other.

Keywords: disease dynamics, epidemics, airborne disease, indirect transmission, matched
asymptotic analysis, Green’s function, ODE, PDE.

1. Introduction

Airborne diseases are well studied in epidemiology and public health, and still remain a serious pub-
lic health concern today. Many airborne diseases are transmitted directly (host-host) and/or indirectly
(host-source-host) through actions such as coughing, sneezing and sometimes vomiting [24]. For ex-
ample, viral diseases (measles, influenza) and bacterial infections (tuberculosis) are transmitted via an
airborne route. In addition, there has been evidence that airborne transmission plays a significant role in
the spread of many opportunistic pathogens causing several acquired nosocomial (hospital) infections
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[2]. Some mathematical models have been used to study the transmission of airborne diseases using
direct and indirect transmission pathways. Noakes et al. in [24] studied the transmission of airborne
infections in enclosed spaces using an S EIR model to show how changes to both physical environment
and infection control could be a potential limitation in the spread of airborne infections. Issarow et al.
in [18] developed a model to predict the risk of airborne infectious diseases such as tuberculosis in
confined spaces using exhaled air. Several approaches including but not limited to the framework in
[29] have been used to study the dynamics of an S IS model with diffusion, [15] to assess the impact of
heterogeneity of environment and advection on the persistence and infectious diseases eradication, and
[21] to evaluate population migration using an S IS epidemic model with diffusion. In addition, several
PDE models such as [29, 31] were also used to study the effect of diffusion. However, despite all these
models and previous studies, it has largely been an open problem to evaluate the effect of diffusion on
the spread of infections between one or two populations. To our knowledge none of these works has
assessed the impact of diffusion using a coupled PDE-ODE SIR model with an indirect transmission
pathway.

In this paper, we consider an airborne disease as any disease caused by pathogen and transmit-
ted through the air. Such diseases include, but are not limited to, cholera, chickenpox, influenza,
measles, smallpox, and tuberculosis, among others. We focus on an indirect transmission pathways
and derive fundamental quantities such as the basic reproduction number (R0) and the final size rela-
tion. To incorporate the limitation of the impact of diffusion among homogeneous and heterogeneous
mixing population, we propose a coupled PDE-ODE model similar to the one used in [16] to model
communication between dynamically active signaling compartments. Our model extends the models
presented in [7] and [13] by incorporating diffusion of pathogens. This allows us to theoretically and
numerically analyze how diffusion affects the spread of air-transmitted diseases, in which the human
populations are confined to distinct spatially segretated regions. The novelty of our approach is that
through a PDE-ODE system we model the spread of airborne diseases allowing for person-air-person
transmission. Overall, our modeling framework provides an altenative way to describe the epidemics
of airborne diseases.

The outline of this paper is as follows. In Section 2, a new coupled PDE-ODE model of epidemics is
formulated, and this model is non-dimensionalized in Section 2.1. In Section 2.2, matched asymptotic
expansion methods is used to reduce the dimensionless coupled PDE-ODE model into a nonlinear
system of ODEs in the limit where the pathogens are diffusing very fast. In Section 3, we study the
dimensionless coupled PDE-ODE model for a single population patch numerically and compare the
result to that of the reduced system of ODEs. We also use the reduced system of ODEs to compute
the basic reproduction number and final size relation. A similar study is performed for the case of two
population patches in Section 4. In Section 5, we study the effect of patch location on the spread of
infection for two population patches. The paper concludes with a brief discussion in Section 6.

2. Model formulation

In this section, we formulate and analyze a coupled PDE-ODE model for studying the spread of
airborne diseases. This model is non-dimensionalized and later reduced into a nonlinear ODE system
in the limit where the diffusivity of pathogens is large.

We begin by representing human populations by localized patches with partially transmitting bound-
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aries through which pathogens are shed into the atmosphere by infected individuals. These pathogens
are assumed to diffuse and decay at a constant rate in the air (bulk region), while the spread of infec-
tion in each patch depends on the density of pathogens around the patch. Pathogens are not explicitly
modeled in the patches; likewise the movement of individuals between patches is not accounted for.
A susceptible individual becomes infected by coming in contact with pathogens (indirect transmis-
sion pathway). Let Ω ⊂ R2 be our 2-D bounded domain of interest containing m population patches
represented by Ω j for j = 1, . . . ,m, and separated by an O(1) distance from each other and from the
boundary of the domain ∂Ω. In the region Ω \ ∪m

j=1 Ω j (bulk region) between the patches, the spatio-
temporal density of pathogens P(XXX,T ) satisfies the partial differential equation (PDE) given by

∂P

∂T
= DB ∆P − δP, T > 0, XXX ∈ Ω \ ∪m

j=1 Ω j; (2.1a)

∂nXXX P = 0, XXX ∈ ∂Ω; DB ∂nXXX P = −r j I j, XXX ∈ ∂Ω j, j = 1, . . . ,m, (2.1b)

where DB > 0 denotes the diffusion rate of pathogens in the bulk region, δ is the dimensional decay rate
of pathogens, r j > 0 is the dimensional shedding rate of pathogen by an infected individual in the jth

patch, and ∂nXXX is the outward normal derivative on the boundary of the domain Ω. The dynamics of the
diffusing pathogens is coupled to the population dynamics of the jth patch using the integro-differential
system of equations given by

dS j

dT
= −µ jS j

∫
∂Ω j

(P/pc) dS XXX; (2.1c)

dI j

dT
= µ jS j

∫
∂Ω j

(P/pc) dS XXX − α jI j; (2.1d)

dR j

dT
= α jI j, j = 1, . . . ,m, (2.1e)

where S j, I j, and R j denote the population of susceptible, infected, and removed individuals in the jth

patch, respectively, withN j(T ) = S j(T )+I j(T )+R j(T ). The parameters µ j and α j are the dimensional
transmission and recovery rates, respectively, for individuals in the jth patch, and pc is a typical value
for the density of pathogens. The integrals in (2.1c) and (2.1d) are over the boundary of the jth patch,
and are used to account for all the pathogens around the patch. These terms show that the spread of
infection within a patch depends on the density of pathogens around it. It is important to emphasize that
our model does not account for pathogens in the patches. The Robin boundary condition DB ∂nXXX P =

−r j I j on the boundary of the jth patch accounts for the amount of pathogen shed into the atmoshere
by infected individuals in the patch. This condition shows that the amount of pathogens shed into the
atmosphere from the jth patch depends on the population of infected individuals within the patch.
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2.1. Non-dimensionalization of the coupled PDE-ODE model

In this subsection, we non-dimensionalize the coupled PDE-ODE model (2.1). The dimensions of
the variables and parameters of the model are given as follow:

[P] =
pathogens
(length)2 , [DB] =

(length)2

time
, [pc] = pathogens, [T ] = time, [XXX] = length,

[δ] = [α j] =
1

time
, [N j] = [S j] = [I j] = [R j] = individuals, [µ j] =

length
time

,

[r j] =
pathogens

individual × time × length
, j = 1, . . . ,m,

(2.2)

where [γ] represents the dimension of γ. Assuming that the patches are circular with common radius
R, which is small relative to the length-scale L of the 2-D domain Ω, we introduce a small scaling
parameter ε = R/L � 1 and the following dimensionless variables

P =
L2

pc
P, S j =

S j

N j
, I j =

I j

N j
, R j =

R j

N j
, xxx =

XXX
L
, t = δT. (2.3)

In this way, S j, I j, and R j are the proportion of susceptible, infected, and removed individuals in the
jth patch, respectively, and P ≡ P(xxx, t) is the dimensionless density of the pathogens at position xxx at
time t. Upon substituting (2.3) into (2.1), we derive that the dimensionless spatio-temporal density of
pathogens P(xxx, t) satisfies

∂P
∂t

= D ∆ P − P, t > 0, xxx ∈ Ω \ ∪m
j=1 Ω j; (2.4a)

∂nxxx P = 0, xxx ∈ ∂Ω; D ∂nxxx P = −r j

(
N jL
δ pc

)
I j, xxx ∈ ∂Ω j, j = 1, . . . ,m, (2.4b)

where D ≡ DB/(δ L2) is the effective diffusion rate of the pathogens. From the system of ODEs ((2.1c)
- (2.1e)) for the population dynamics of the jth patch, we derive the dimensionless system

dS j

dt
= −

( µ j

δ L

)
S j

∫
∂Ωε j

P dsxxx;

dI j

dt
=

( µ j

δ L

)
S j

∫
∂Ωε j

P dsxxx − φ jI j;

dR j

dt
= φ jI j, j = 1, . . . ,m,

(2.5)

where Ωε j = {xxx : |xxx j − xxx| < ε} represents the jth patch of radius ε � 1 with center at xxx j and boundary
∂Ωε j. It is important to remark that we have used the scaling dS XXX = L dsxxx in the integrals on the
boundary of the patches. Since the patches are relatively small compared to the length-scale of the
domain, we assume that

(
µ j/δ L

)
and r j

(
N jL/δ pc

)
areO(1/ε) in order to effectively capture the density

of the pathogen shed into the atmosphere. Hence, we set

β j

2πε
=
µ j

δL
and

σ j

2πε
= r j
N jL
δ pc

, (2.6)
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such that β j and σ j are O(1). This rescaling enables us to write the dimensionless transmission and
shedding rates, β j and σ j, respectively, as functions of the circumference of the jth patch. Substituting
(2.6) into (2.4) and (2.5), we have that the dimensionless density of the pathogens P(xxx, t) satisfies

∂P
∂t

= D ∆ P − P, t > 0, xxx ∈ Ω \ ∪m
j=1 Ωε j; (2.7a)

∂nxxx P = 0, xxx ∈ ∂Ω; 2πεD ∂nxxx P = −σ j I j, xxx ∈ ∂Ωε j, j = 1, . . . ,m, (2.7b)

which is coupled to the dimensionless SIR dynamics of the jth patch through the integro-differential
equations given by

dS j

dt
= −

β jS j

2πε

∫
∂Ωε j

P dsxxx;

dI j

dt
=
β jS j

2πε

∫
∂Ωε j

P dsxxx − φ jI j; (2.7c)

dR j

dt
= φ jI j, j = 1, . . . ,m,

where β j, σ j and φ j are the dimensionless transmission, shedding and recovery rates for the jth patch,
respectively, and are given by

β j =
2πε
δL

µ j, σ j =
2πε
δ pc

r jN jL and φ j =
α j

δ
. (2.8)

In the next subsection, we study the dimensionless coupled PDE-ODE model (2.7) in the limit D =

O(ν−1), where ν = −1/ log ε and ε � 1 using the method of matched asymptotic expansions, tailored
to problems involving strong localized spatial perturbations [28], [16].

2.2. Asymptotic analysis of the dimensionless coupled PDE-ODE model

Here, the dimensionless coupled PDE-ODE model (2.7) is analyzed in the limit D = O(ν−1), where
ν ≡ −1/ log ε for ε � 1, using the method of matched asymptotic expansions. This analysis is used to
reduce the coupled model into a nonlinear system of ODEs, which is then used to determine the basic
reproduction number and final size relation of epidemics.

We begin our analysis by rescaling the diffusion rate of pathogens as

D =
D0

ν
, where D0 = O(1) and ν = −

1
log ε

� 1. (2.9)

Substituting D = D0/ν into (2.7a) and (2.7b), we obtain

∂P
∂t

=
D0

ν
∆ P − P, t > 0, xxx ∈ Ω \ ∪m

j=1 Ωε j; (2.10a)

∂nxxx P = 0, xxx ∈ ∂Ω; 2πε
D0

ν
∂nxxx P = −σ j I j, xxx ∈ ∂Ωε j, j = 1, . . . ,m. (2.10b)

Since the pathogens shed by infected individuals go into the air through the boundary of the patches,
one would expect the density of pathogens around each patch to be high relative to the regions far
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away from the patches. As a result of this, we construct an inner region at an O(ε) neighborhood of
each patch, and introduce the local variables yyy = ε−1(xxx − xxx j) and P(xxx) = Q j(εyyy + xxx j), with |yyy| = ρ for
j = 1, . . . ,m. Upon writing (2.10a) and (2.10b) in terms of the inner variables, we obtain for ε � 1 the
limiting inner problem

∆ρ Q j = 0, t > 0, ρ > 1;

2π
D0

ν
∂ρ Q j = − σ j I j, ρ = 1, j = 1, . . . ,m,

(2.11)

where ∆ρ ≡ ∂ρρ + ρ−1∂ρ is the radially symmetric part of the Laplacian in 2-D. In this inner region, we
expand Q j(ρ, t) as

Q j = Q0 j +
ν

D0
Q1 j + . . . . (2.12)

Upon substituting this expansion into (2.11), and collecting terms in powers of ν, we obtain the leading-
order inner problem

∆ρ Q0 j = 0, t > 0, ρ > 1; ∂ρ Q0 j = 0 on ρ = 1, j = 1, . . . ,m. (2.13)

Observe that any constant or function of time is a solution to this problem, so that Q0 j ≡ Q0 j(t). The
next-order inner problem is given by

∆ρ Q1 j = 0, t > 0, ρ > 1; 2π ∂ρ Q1 j = − σ j I j on ρ = 1, j = 1, . . . ,m, (2.14)

and its solution is readily calculated as

Q1 j =

(
−σ j I j

2π

)
log ρ + c j, j = 1, . . . ,m, (2.15)

where c j, for j = 1, . . . ,m, are constants to be determined. Substituting the solutions Q0 j and Q1 j

into the inner expansion (2.12), and writing the resulting expression in terms of the outer variables, we
obtain a two term asymptotic expansion of the inner solution

Q j =

(
Q0 j(t) −

σ jI j

2πD0

)
+

ν

D0

(
−
σ jI j

2π
log |xxx − x jx jx j| + c j

)
+ . . . . (2.16)

Next, from (2.4a) and (2.4b), we construct the outer problem for the density of pathogens, which is
valid far away from the patches, as

∂P
∂t

= D ∆ P − P, t > 0, xxx ∈ Ω \ {xxx1, . . . , xxxm}; ∂n P = 0, xxx ∈ ∂Ω, (2.17)

where xxx1, . . . , xxxm are the centers of the patches. In this region, we expand the outer solution as

P = P0 +
ν

D0
P1 + . . . . (2.18)
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Substituting (2.18) into (2.17), and collecting terms in powers of ν, we obtain the leading-order outer
problem given by

∆P0 = 0, t > 0, xxx ∈ Ω \ {xxx1, . . . , xxxm}; ∂nP0 = 0, xxx ∈ ∂Ω. (2.19)

Observe that this problem is similar to the leading-order inner problem (2.13) and any constant or
function of time satisfies it. As a result of this, we chose the leading-order outer solution to be P0 ≡

P0(t). The next order outer problem for P1 is given by

∆P1 = P0 + P0t , xxx ∈ Ω \ {xxx1, xxx2, . . . , xxxm}; ∂nP1 = 0, xxx ∈ ∂Ω. (2.20)

Upon matching the inner solution (2.16) and the outer expansion (2.18), we obtain the following re-
quired singularity behavior for the outer solution as xxx −→ xxx j:

P0(t) +
ν

D0
P1 + . . . ∼

(
Q0 j(t) −

σ jI j

2πD0

)
+

ν

D0

(
−
σ jI j

2π
log |xxx − x jx jx j| + c j

)
+ . . . , xxx −→ xxx j. (2.21)

In this way, we obtain the matching conditions

P0(t) ∼ Q0 j(t) −
σ jI j

2πD0
and P1 ∼ −

(
σ j I j

2π

)
log |xxx − xxx j| as xxx −→ xxx j. (2.22)

The first condition yields that Q0 j(t) = P0(t) + σ jI j/(2πD0) for each j = 1, . . . ,m. The ODE for P0(t)
is derived from a solvability condition on the problem for P1. To do so, it is convenient to write the
singularity behaviour of P1 given in (2.22) as a delta function forcing for the PDE in (2.20). In this
way, the outer problem for P1 is equivalent to

∆P1 = P0 + P′0 +

m∑
i=1

(−σi Ii) δ(xxx − xxxi), xxx ∈ Ω; ∂nP1 = 0, xxx ∈ ∂Ω. (2.23)

Integrating (2.23) over the domain Ω and using the divergence theorem, we obtain an ODE for the
leading-order density of pathogens P0(t) in the bulk region given by

P′0 = −P0 +
1
|Ω|

m∑
i=1

σi Ii. (2.24)

This ODE is the solvability condition for the O(ν) outer problem (2.23).
To solve the outer problem (2.23), we introduce the unique Neumann Green’s function G(xxx; xxx j),

which satisfies

∆G =
1
|Ω|
− δ(xxx − xxx j), xxx ∈ Ω; ∂nG = 0, xxx ∈ ∂Ω; (2.25a)

G(xxx; xxx j) ∼ −
1

2π
log |xxx − xxx j| + R j, as xxx −→ xxx j, and

∫
Ω

G dxxx = 0, (2.25b)

where R j ≡ R(xxx j) is the regular part of G(xxx; xxx j) at xxx = xxx j. Without loss of generality, we impose∫
Ω

P1 dxxx = 0, so that the spatial average of P in the bulk region is P0. Therefore, the solution to the
outer problem (2.23) is written in terms of the Neumann Green’s function G(xxx; xxx j) as

P1 =

m∑
i=1

σiIi G(xxx; xxxi). (2.26)
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Upon substituting (2.26) into the outer expansion (2.18), we obtain a two-term asymptotic expansion
of the outer solution in the bulk region as

P = P0 +
ν

D0

m∑
i=1

σiIi G(xxx; xxxi) + . . . . (2.27)

Now, we expand (2.26) as xxx −→ xxx j, and substitute the singularity behaviour of the Neumann Green’s
function G(xxx, xxx j) given in (2.25b) into the corresponding expansion to get

P1 ∼ σ jI j

(
−

1
2π

log |xxx − xxx j| + R j

)
+

m∑
i, j

σiIi G(xxx j; xxxi) as xxx −→ xxx j, j = 1, . . . ,m. (2.28)

Matching the inner and outer solutions, we derive the constants c j in terms of the Neumann Green’s
function as

c j = σ jI jR j +

m∑
i, j

σiIi G(xxx j; xxxi), j = 1, . . . ,m. (2.29)

Thus, substituting (2.29) into (2.16), we derive a two-term asymptotic expansion of the inner solution
Q j(ρ, t), valid in an O(ε) neighborhood of the jth patch, given by

Q j =

(
P0(t) +

σ j I j

2πD0

)
+

ν

D0

− (
σ j I j

2π

)
log ρ + σ jI jR j +

m∑
i, j

σiIi G(xxx j; xxxi)

 + . . . , j = 1, . . . ,m.

(2.30)

Lastly, by substituting the inner solution (2.30) into the SIR system in (2.7c), and evaluating the inte-
grals over the boundary of the jth patch, we obtain a nonlinear system of ODEs for the leading-order
density of pathogens in the bulk region coupled to the population dynamics of the jth patch. This
system is given by

dP0

dt
= −P0 +

1
|Ω|

m∑
j=1

σ j I j, (2.31a)

which is coupled to

dS j

dt
= −β jS j

(
P0(t) +

σ j I j

2πD0

)
−

ν

D0
β jS jΨ j,

dI j

dt
= β jS j

(
P0(t) +

σ j I j

2πD0

)
+

ν

D0
β jS jΨ j − φ jI j, (2.31b)

dR j

dt
= φ jI j, j = 1, . . . ,m.

Here, Ψ j = (GΦ) j is the jth entry of the vector GΦ, with Φ = (σ1I1, . . . , σmIm)T and G is the Neumann
Green’s matrix whose entries are defined by

(G) j j = R j ≡ R(xxx j) for i = j and (G)i j = G(xxxi; xxx j) for i , j with (G)i j = (G) ji.

(2.32)
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The function G(xxx j; xxxi) is the Neumann Green’s function satisfying (2.25) and R j ≡ R(xxx j) is its regular
part at the point xxx = xxx j. In our analysis, D0 = O(1) and ν = −1/ log ε � 1. Therefore, as ε tends
to zero, ν also approaches zero, and so to leading-order we can neglect the O(ν) terms in (2.31b).
Replacing the leading-order density of pathogens P0 with p in (2.31), we derive the leading-order
system of ODEs given by

dp
dt

= −p +
1
|Ω|

m∑
j=1

σ j I j, (2.33a)

dS j

dt
= −β jS j

(
p(t) +

σ j I j

2πD0

)
, j = 1 . . . ,m , (2.33b)

dI j

dt
= β jS j

(
p(t) +

σ j I j

2πD0

)
− φ jI j, j = 1, . . . ,m , (2.33c)

dR j

dt
= φ jI j, j = 1, . . . ,m, (2.33d)

Observe that we started with the dimensionless coupled PDE-ODE model (2.7) for studying the
spread of airborne disease with indirect transmission, and arrived at the leading-order reduced system
of ODEs (2.33) in the limit D = O(ν−1). This system of ODEs also models indirect transmission of
infections, even though, the terms with σ j I j/(2πD0) in (2.33b) and (2.33c) make it look like infection
is transmitted from person-to-person through direct interaction. This term does not model direct trans-
mission; rather, it accounts for the pathogens shed by infected individuals in a patch. The density of
these pathogens depend on the scaled-diffusion rate D0 > 0. When the pathogens diffuse more slowly
(smaller values of D0), there is a significant contribution from this term. This contribution decreases
as the pathogens diffuse faster (increasing D0). Moreover, in the limit D0 −→ ∞, this terms tends to
zero and (2.33) reduces to the model for well-mixed regime given in equation 5 of [13]. In Sections 3
and 4, the reduced system of ODEs (2.33) is used to compute the basic reproduction number and final
size relation for one and two population patches, respectively. The effect of the spatial locations of the
patches and their interaction, as characterized by the O(ν) terms in (2.31), is studied in Section 5.

3. One-patch model

In the previous section, the method of matched asymptotic expansions was used to reduce the di-
mensionless coupled PDE-ODE model (2.7) to the nonlinear system of ODEs (2.31), for the leading-
order density of pathogens p and m population patches. In this section, we consider a single population
patch located at the center of a unit disk, and use the dimensionless coupled model (2.7) together with
the reduced system of ODEs (2.33) to study the effect of diffusion on the spread of infection in the
population.

From (2.7), we derive that the density of pathogens P(xxx, t) for this one-patch scenario satisfies

∂P
∂t

= D ∆ P − P, t > 0, xxx ∈ Ω \Ω0; (3.1a)

∂n P = 0, xxx ∈ ∂Ω; 2πεD ∂n P = −σ I, xxx ∈ ∂Ω0. (3.1b)

Here, Ω is a unit disk and Ω0 ⊂ Ω is a disk of radius ε � 1 representing the single population patch,
which is located at the center of the unit disk. The density of pathogens P is coupled to the SIR
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dynamics of the population given by

dS
dt

= −
βS
2πε

∫
∂Ω0

P ds;

dI
dt

=
βS
2πε

∫
∂Ω0

P ds − φI; (3.1c)

dR
dt

= φI,

From the reduced system of ODEs (2.33), we obtain an ODE model for a single population patch given
by

dp
dt

= −p +
1
|Ω|

(σ I),
dS
dt

= −βS p − βS
(
σ I

2πD0

)
,

dI
dt

= βS p + βS
(
σ I

2πD0

)
− φI,

dR
dt

= φI.

(3.2)
To study the spread of infection in the population and the effect of diffusion on the epidemic caused

by the pathogens, we solve the coupled PDE-ODE model (3.1) numerically using the commercial
finite element package, FlexPDE [26] with several different diffusion rates of pathogens. The full
PDE results are then compared with results from the reduced system of ODEs (3.2), which is valid
for D = D0/ν � 1. In addition, the limiting ODE system (3.2) is analyzed using the method of
Kermack-McKendrick similar to that done in [7, 10]. To do so, the following simple lemma is needed:

Lemma 1. Let f (t) be a nonnegative monotone nonincreasing continuously differentiable function
such that as t → ∞, f (t)→ f∞ ≥ 0, then f ′ → 0 as t → ∞.

Upon summing the equations for S and I in (3.2), we obtain

(S + I)′ = −φI ≤ 0. (3.3)

This implies that (S + I) decreases to a limit. It can be shown from Lemma 1 that its derivative
approaches zero, so that we can conclude that I∞ = lim

t→∞
I(t) = 0. In addition, by integrating (3.3), we

obtain ∫ ∞

0
I(t)dt =

N(0) − S∞
φ

, (3.4)

which implies that
∫ ∞

0
I(t)dt < ∞, where S∞ = limt→∞ S (t) denotes the total susceptible populations

remaining after the outbreak. This simple property is employed when computing the final size relation
below.

3.1. The basic reproduction number R0

The calculation of the basic reproduction number is done using the next generation matrix method,
similar to that done in [14, 27]. Note that there are two infectious classes I and p for this sce-
nario. The Jacobian matrix F for new infections evaluated at the disease free equilibrium state,
DFE=(S 0, 0, 0)=(N(0), 0, 0) is given by

F =
(∂Fi

∂x j

)
i, j

=

βσN(0)
2πD0

βN(0)

0 0

 ,
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where the functions F1 ≡ dI/dt, F2 ≡ dp/dt in (3.2) and x j = I, p for j = 1, 2. The Jacobian matrix V
for transfer of infections between compartments, evaluated at the disease free equilibrium point DFE
is

V =
(∂Vi

∂x j

)
i, j

=


φ 0

−
σ

|Ω|
1

 , and FV−1 =


βN(0)σ
φ|Ω|

+
βN(0)σ
2φπD0

βN(0)

0 0

 .
Remark 1. In order to calculate the basic reproduction number for the model in (3.2), we use the next
generation matrix method as in [14, 27] known to be the dominant eigenvalues of FV−1 (the spectral
radius of the matrix FV−1), and given as

R0 =
βN(0)σ
φ|Ω|

+
βN(0)σ
2φπD0

. (3.5)

Conveniently, we can decompose R0 as R0 = R? + RD, where R? =
βN(0)σ
φ|Ω|

and RD =
βN(0)σ
2φπD0

.

The expression for R0 in (3.5) denotes the secondary infections contributed by indirect transmission
(R?) and diffusion (RD). The term R? represents the secondary infections caused indirectly through the
pathogen since a single infective I sheds a quantity σ of the pathogen per unit time for a time period
1/φ and this pathogen infects βN susceptibles. The second term RD denotes the secondary infections
caused by the pathogen diffusing in the bulk at the rate D0 since a single infective I sheds a quantityσ of
the pathogen per unit time for a time period 1/φ and this pathogen infects βN susceptible individuals
in the patch. As the diffusion rate of pathogens become asymptotically large, that is, D0 → ∞, we
observe that RD → 0. Therefore, in this limit, the basic reproduction number R0 in (3.5) can be written
as

R∞0 = lim
D0→∞

R0 =
βN(0)σ
φ|Ω|

= R?. (3.6)

A more detailed discussion of equation (3.6) will be given below while explaining our numerical sim-
ulations. The implication of the basic reproduction number R0 is summarized as follows in the readily
proved result.

Theorem 1. For system (3.2), the infection dies out whenever R0 < 1. In contrast, an epidemic occurs
whenever R0 > 1.

3.2. The final size relation

The final size relation gives an estimate of the total number of infections and the epidemic size for
the period of the epidemic in terms of the parameters in the model, as similar to that done in [3, 5].
In other words, the final size relation is used to estimate the total number of disease deaths and cases
from the parameters of the model. Following the approach in [1, 4, 5, 7, 6, 8, 9, 11], we integrate the
equation for S in (3.2) to get

log
S 0

S∞
= β

∫ ∞

0
p(t)dt +

βσ

2πD0

∫ ∞

0
I(t)dt, (3.7)
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Similarly, integrating the equation for p(t) in (3.2) gives

p(t) = p0 e−t +
σ

|Ω|

∫ t

0
e−(t−s)I(s)ds. (3.8)

Next, we need to show that

lim
t→∞

∫ t

0
e−(t−s)I(s) ds = lim

t→∞

∫ t

0
esI(s) ds

et = 0. (3.9)

If the integral in the numerator of (3.9) is bounded, this relation is immediate. If the numerator is
unbounded, L’Hopital’s rule yields that limt→∞

∫ t

0
e−(t−s)I(s) ds = limt→∞ I(t) = I(∞), which vanishes

as established above following equation (3.3). Therefore, (3.8) yields that

p∞ = lim
t→∞

p(t) = 0.

By integrating (3.8), interchanging the order of integration, and then using (3.4), we get∫ ∞

0
p(t)dt =

σ

|Ω|

∫ ∞

0
I(t)dt + p0, (3.10)

which implies that
∫ ∞

0
p(t) dt < ∞. Upon substituting (3.10) into (3.7), we obtain

log
S 0

S∞
=
βσ

|Ω|

∫ ∞

0
I(t) dt +

βσ

2πD0

∫ ∞

0
I(t) dt + β p0,

so that, by using (3.4), we obtain the final size relation

log
S 0

S∞
=

βσN
φ|Ω|

{
1 −

S∞
N

}
+

βσN
2πφD0

{
1 −

S∞
N

}
+ β p0,

= R?

{
1 −

S∞
N

}
+ RD

{
1 −

S∞
N

}
+ β p0.

This implies that S∞ > 0. In a situation where the outbreak begins with no contact with pathogen, so
that p0 = 0, the final size relation becomes

log
S 0

S∞
= R?

{
1 −

S∞
N

}
+ RD

{
1 −

S∞
N

}
=

(
R? + RD

) {
1 −

S∞
N

}
= R0

{
1 −

S∞
N

}
. (3.11)

Equation (3.11) is referred to as the final size relation, and this gives a relationship between the basic
reproduction number and the epidemic size. Note that the total number of infected population over the
period of the epidemic is N − S∞ and can also be described in terms of the attack rate

(
1− S∞/N

)
as in

[5].

3.3. Numerical simulation for one-patch model

Next, we present some numerical simulations of the coupled PDE-ODE model (3.1) and the reduced
system of ODEs (3.2) for the case of a single population patch located at the center of a unit disk. The
coupled model (3.1) is solved numerically using the commercial finite element package FlexPDE [26],
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Table 1. Model Variables and their Descriptions

Parameter Description Dimensional(less) values
µ (β) dimensional (dimensionless) effective

contact rate
0.3 [3]

(
computed using (2.8)

)
r (σ) dimensional (dimensionless) pathogen

shedding rate
0.1 [30]

(
computed using (2.8)

)
α (φ) dimensional (dimensionless) removed

rate for infected individuals
1.87 [30]

(
computed using (2.8)

)
δ dimensional decay rate of pathogens 0.25
pc typical value for density of pathogens 0.01
ε radius of the population patches 0.02
|Ω| area of the domain (unit disk) π

while the reduce ODE system (3.2) is solved using the numerical ODE solver ODE45 in MATLAB
[25]. For these models, simulations are done with different diffusion rates of pathogens in order to
understand the effect of diffusion on the dynamics of the infected population. The parameters used for
these simulations are shown in Table 1.

Figure 1 shows the proportion of infected over time when an epidemic begins with one infective
in a total population of 250 individuals, with susceptible, infected and recovered population given as
S (0) = 249/250, I(0) = 1/250 and R(0) = 0, respectively. The initial density of pathogen used for both
the coupled model and the reduced system of ODEs is p(0) = P(0) = 0, denoting that the outbreak
begins with no pathogen in the air, and that the only source of pathogen into the system is the ones
shed by infected individuals. We observe from this figure that the proportion of infected individuals
decreases with increases in the diffusion rate of pathogen. This shows that when pathogens diffuse
slowly, they cluster around the population as they are being shed. As a result, since human populations
are confined in a region, this in turn leads to more infections.

However, when pathogens diffuse faster (diffusion rate increases), they diffuse away from the pop-
ulation as they are being shed, which in turn, reduces the density of pathogens around the patch. This
effect lowers the population of infected individuals. Comparing Figure 1(a) and 1(b), we notice that
the proportion of infectives estimated by the two models are similar when D and D0 are small and
when they are asymptotically large. Since D = D0/ν, a small value of D0 implies that D is also small.
As a result of this, the two models would behave similar in this limit even though the reduced system
of ODEs (3.2) is only valid in the limit D = O(ν−1), where ν = − log ε, with ε � 1. The difference
between the two models becomes more apparent with an increase in the diffusion rate, as the number
of infectives estimated by the system of ODEs is less as compared to that of the PDE-ODE model. This
is because the system of ODEs is valid in the limit D = O(ν−1), and the spread of infection decreases
as D increases. Lastly, as the diffusion rates become asymptotically large, the solutions of the two
models essentially coincide. This is because when D → ∞, the problem becomes well-mixed, where
the density of pathogen is homogeneous in space, and the coupled PDE-ODE model can be reduced to
a system of ODEs. Similarly, if we take the limit of the reduced system of ODEs (3.2) as D0 −→ ∞, we
have the model studied in [7]. This suggests that the model in [7] can be interpreted as the well-mixed
limit of the coupled PDE-ODE model (3.1).
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(a) Simulation of the reduced system of ODE (3.2)
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(b) Simulation of the coupled PDE-ODE (3.1)

Figure 1. The dynamics of infected I(t) for different diffusion rates of pathogen D and
D0, and other parameters as in Table 1. (a) shows the result obtained from the system of
ODEs (3.2) with initial conditions (S (0), I(0),R(0), p(0)) = (249/250, 1/250, 0, 0), while
(b) is the result of the dimensionless coupled PDE-ODE model (3.1) with initial conditions
(S (0), I(0),R(0), P(0)) = (249/250, 1/250, 0, 0).
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(a) Simulation of the reduced system of ODE (3.2)
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(b) Simulation of the coupled PDE-ODE (3.1)

Figure 2. The dynamics of proportion of infected individuals I(t) for different diffusion rates
of pathogen, and all other parameters as in Table 1. (a) shows the result obtained from the
system of ODEs (3.2) with initial conditions (S (0), I(0),R(0), p(0)) = (249/250, 1/250, 0, 1),
while (b) is the result of the dimensionless coupled PDE-ODE model (3.1) with initial condi-
tions (S (0), I(0),R(0), P(0)) = (249/250, 1/250, 0, 1).
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The results in Figure 2 are similar to those in Figure 1 except that the initial conditions of the
pathogens is taken as P(0) = p(0) = 1. This models the case where there is pathogen in the air at the
beginning of the outbreak. The other initial conditions are the same as those used in Figure 1. These
results show how the presence of pathogens in the atmosphere at the beginning of the outbreak would
affect the transmission of infection. The epidemic takes off earlier when there are pathogens in the air
at the beginning of the outbreak (Figure 2) compared to when there are no pathogens at the beginning
(Figure 1). When the diffusion rate is small, the model with (Figure 2) and without (Figure 1) pathogen
at the beginning of the outbreak have similar estimates. This is because the pathogens are barely mov-
ing when the diffusion rate is small, and as a result, it does not make much difference whether they are
present or not. As the diffusion rate of pathogens increases, there seems to be significant differences in
the two solutions, since, the epidemic takes off earlier in Figure 2 as compared to Figure 1. Therefore,
the presence of pathogens in the air around the population patch increases the spread of infection in
the population, as expected intuitively.

(a) (b)

Figure 3. Surface plots of the basic reproduction number R0 in (3.5) for the one-patch
model (3.2) plotted with respect to the diffusion rate of pathoegns D0 and some dimensionless
parameters of the SIR model. (a) is for D0 and the transmission rate β, while (b) is for D0

and the shedding rate σ. The parameters used are given in Table 1.

The surface plots in Figure 3 show the basic reproduction number R0 in (3.5) for the one-patch
model (3.2) in terms of the diffusion rate of pathogens D0 and the dimensionless transmission and
shedding rates, β and σ, respectively. These results show the effect of D0 on the basic reproduction
number, R0. We observe from both results in this figure that R0 increases as the transmission and shed-
ding rates increase, and decreases as D0 increases for a fixed value of the transmission and shedding
rates. These results agree with the simulations in Figures 1 and 2, where the spread of infections de-
creases as the diffusion rate of pathogen increases. In Figure 3(a), the largest R0 is obtained when D0

is small and the transmission rate β is large. This is reasonable because when pathogens diffuse slowly,
it would take longer for them to diffuse away from the population, and as a result, they continue to
cause infections in the population, and consequently this leads to a large basic reproduction number.
Similarly, in Figure 3(b), the largest R0 is obtained when the shedding rate of pathogen is large and
D0 is small, because when infected individuals shed pathogens at a high rate and the pathogens do not
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diffuse away from the population, they lead to more infections. When the transmission and shedding
rates are low, irrespective of the diffusion rate of pathogens, the reproduction number will be less than
one and the epidemic will die out.

In the next section, we perform a similar analysis for a scenario with two spatially segregated
populaton patches.

4. Two-patch model

In the previous section, we studied the effect of the diffusion rate of pathogens on the spread of
infection in a single population. In this section, we consider a scenario with two population patches,
and use the dimensionless coupled PDE-ODE model (2.7) and the reduced system of ODEs (2.33) with
m = 2 to study the dynamics of infection in these populations. The patches are centered at xxx1 = (0.5, 0)
and xxx2 = (−0.5, 0) in a unit disk.

For this two-patch scenario, the density of pathogen P for the coupled PDE-ODE model satisfies

∂P
∂t

= D ∆ P − P, t > 0, xxx ∈ Ω \ {Ω1 ∪Ω2}; (4.1a)

∂n P = 0, xxx ∈ ∂Ω; 2πεD ∂n P = −σ1 I1, xxx ∈ ∂Ω1; 2πεD ∂n P = −σ2 I2, xxx ∈ ∂Ω2,

(4.1b)

where Ω1 and Ω2 are the two population patches centered at xxx1 = (0.5, 0) and xxx2 = (−0.5, 0). This
density of pathogen is coupled to the population dynamics of the two patches through the following
ODE system:

Patch 1 Patch 2
dS 1

dt
= −

β1S 1

2πε

∫
∂Ω1

P ds;
dS 2

dt
= −

β2S 2

2πε

∫
∂Ω2

P ds;

dI1

dt
=
β1S 1

2πε

∫
∂Ω1

P ds − φ1I1;
dI2

dt
=
β2S 2

2πε

∫
∂Ω2

P ds − φ2I2; (4.1c)

dR1

dt
= φ1I1;

dR2

dt
= φ2I2.

The coupled PDE-ODE model (4.1) is solved numerically using FlexPDE [26] with different diffusion
rates for the pathogens. The solutions are used to study the effect of diffusion on the spread of the
infection caused by the pathogens within the population. From (2.33), we construct the reduced system
of ODEs for the case of two patches as

dp
dt

= −p +
1
|Ω|

(σ1 I1 + σ2 I2), (4.2a)

Patch 1 Patch 2
dS 1

dt
= −β1S 1 p − β1S 1

(
σ1 I1

2πD0

)
,

dS 2

dt
= −β2S 2 p − β2S 2

(
σ2 I2

2πD0

)
,

dI1

dt
= β1S 1 p + β1S 1

(
σ1 I1

2πD0

)
− φ1I1,

dI2

dt
= β2S 2 p + β2S 2

(
σ2 I2

2πD0

)
− φ2I2, (4.2b)
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dR1

dt
= φ1I1,

dR2

dt
= φ2I2,

with initial conditions

S 1(0) = S 10, S 2(0) = S 20, I1(0) = I10, I2(0) = I20, R1(0) = 0, R2(0) = 0, p(0) = p0,

in a population of constant total size N = N1 + N2, where N1 = S 1 + I1 + R1 = S 10 + I10 and N2 =

S 2 + I2 + R2 = S 20 + I20. This system of ODEs is similar to the model studied in [13], in which indirect
transmission of diseases with no diffusion was studied. For our model we will compute the basic
reproduction number and the final size relation. The analytical approach for the Kermack-McKendrick
epidemic model, as employed in [7] and [10], will be used in the analysis.

Summing the equations for S 1 and I1, and then those for S 2 and I2 in (4.2b), we obtain

(S 1 + I1)′ = −φ1I1 ≤ 0. (4.3)

(S 2 + I2)′ = −φ2I2 ≤ 0. (4.4)

Here, we see that (S 1 + I1) and (S 2 + I2) decreases to a limit, and we can show from Lemma 1 that their
derivatives approach zero. Therefore, we conclude that I1∞ = lim

t→∞
I1(t) = 0 and I2∞ = lim

t→∞
I2(t) = 0.

Next, by integrating (4.3) we get φ1

∫ ∞
0

I1(t)dt = S 1(0) + I1(0) − S 1∞ = N1(0) − S 1∞, so that∫ ∞

0
I1(t)dt =

N1(0) − S 1∞

φ1
, (4.5)

which implies that
∫ ∞

0
I1(t)dt < ∞. Similarly, we integrate (4.4), to obtain∫ ∞

0
I2(t)dt =

N2(0) − S 2∞

φ2
. (4.6)

Here, S 1∞ = limt→∞ S 1(t) and S 2∞ = limt→∞ S 2(t) denote the total susceptible population remaining
after the outbreak in patch 1 and patch 2, respectively.

4.1. Reproduction number R0

Following a similar approach to that used in Section 3.1 for the one-patch model, we construct our
system of infected classes as

dI1

dt
= β1S 1 p + β1S 1

(
σ1 I1

2πD0

)
− φ1I1, (4.7a)

dI2

dt
= β2S 2 p + β2S 2

(
σ2 I2

2πD0

)
− φ2I2, (4.7b)

dp
dt

= −p +
1
|Ω|

(σ1 I1 + σ2 I2). (4.7c)

Using the next generation matrix approach in [14], [27], the basic reproduction num-
ber is calculated as follows. We first introduce the three infectious classes I1, I2, p, and
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the Jacobian matrix of Fi = (F1,F2,F3), evaluated at the disease free equilibrium point
DFE=(S 10, 0, 0, S 20, 0, 0)=(N1(0), 0, 0,N2(0), 0, 0, 0) given by

F =

(
∂Fi

∂x j

)
i, j

=


β1σ1N1(0)

2πD0
0 β1N1(0)

0
β2σ2N2(0)

2πD0
β2N2(0)

0 0 0

 ,
where x j = I1, I2, p for j = 1, 2, 3 and i = 1, 2, 3.

The Jacobian matrix ofVi = (V1,V2,V3), evaluated at the disease free equilibrium point DFE is

V =
(∂Vi

∂x j

)
i, j

=



φ1 0 0

0 φ2 0

−
σ1

|Ω|
−
σ2

|Ω|
1


, and

FV−1 =



β1N1(0)σ1

φ1|Ω|
+
β1N1(0)σ1

2φ1πD0

β1N1(0)σ2

φ2|Ω|
β1N1(0)

β2N2(0)σ1

φ1|Ω|

β2N2(0)σ2

φ2|Ω|
+
β2N2(0)σ2

2φ2πD0
β2N2(0)

0 0 0


.

Remark 2. To calculate the basic reproduction number for the 2-patch model in (4.7), we use the
method of next generation matrix in [14, 27] given as the dominant eigenvalues of FV−1 (the spectral
radius of the matrix FV−1). A simple calculation yields that

R0 =
(|Ω| + 2πD0)♣
4πφ1φ2|Ω|D0

+

√
(|Ω|2 + 4π|Ω|D0)♠2 + 4π2D2

0♣
2

4πφ1φ2|Ω|D0
, (4.8)

where we have defined ♣ and ♠ by

♣ = β1N1(0)φ2σ1 + β2N2(0)φ1σ2 , ♠ = β1N1(0)φ2σ1 − β2N2(0)φ1σ2.

In the well-mixed limit D0 � 1, similar to that studied for the one patch model in Section 3, the
reproduction number R0 in (4.8) reduces to R∞0 = limD0→∞ R0 = ♣/(φ1φ2|Ω|), which implies that

R∞0 =
β1N1(0)σ1

φ1|Ω|
+
β2N2(0)σ2

φ2|Ω|
. (4.9)

We observe that R∞0 can also be decomposed as R∞0 = β1R1 + β2R2, where R1 =
N1(0)σ1

φ1|Ω|
and R2 =

N2(0)σ2

φ2|Ω|
.
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We can interpret the large D0 limiting value R∞0 of the reproduction number as follows. The formula
for R∞0 in (4.9) denotes the contribution of the first and second patch. The term β1R1 represents the
secondary infections caused indirectly through the pathogen since a single infective I1 sheds a quantity
σ1 of the pathogen per unit time for a time period 1/φ1, and this pathogen infects β1N1 susceptibles.
The second term β2R2 denotes the secondary infections caused indirectly through the pathogen since
a single infective I2 sheds a quantity σ2 of the pathogen per unit time for a time period 1/φ2, and this
pathogen infects β2N2 susceptibles.

A detailed qualitative explanation of R0 (for the case where D0 = O(1)) and R∞0 (for the well-mixed
limit D0 → ∞), will be given below when discussing our results from numerical simulations. The
following easily-proved Theorem summarizes the implications of the reproduction number R∞0 .

Theorem 2. For the well-mixed limit D0 → ∞ for the system (4.2), the infection dies out whenever
R∞0 < 1, while an epidemic occurs whenever R∞0 > 1.

4.2. The final size relation

Following the same approach as in subsection 3.2, we integrate the equations for S 1 and S 2 in (4.2b)
to get

log
S 10

S 1∞
= β1

∫ ∞

0
p(t)dt +

β1σ1

2πD0

∫ ∞

0
I1(t) dt, (4.10)

and
log

S 20

S 2∞
= β2

∫ ∞

0
p(t)dt +

β2σ2

2πD0

∫ ∞

0
I2(t) dt. (4.11)

Similarly, integrating the equation for p in (4.2a), we obtain

p(t) = p0e−t +
σ1

|Ω|

∫ t

0
e−(t−s)I1(s)ds +

σ2

|Ω|

∫ t

0
e−(t−s)I2(s)ds. (4.12)

Next, we need to show that

lim
t→∞

∫ t

0
e−(t−s)I1(s)ds = lim

t→∞

∫ t

0
esI1(s)ds

et = 0 and lim
t→∞

∫ t

0
e−(t−s)I2(s)ds = lim

t→∞

∫ t

0
esI2(s)ds

et = 0.

(4.13)

If the integral in the numerators of the two expressions in (4.13) are bounded, the result is immediate.
Alternatively, if these integrals are unbounded, then by L’Hopital’s rule these two limits reduce to
limt→∞ I1(t) and limt→∞ I2(t) = 0, which vanish since I1(∞) = I2(∞) = 0 as was shown above following
(4.4) (see also [7]). As a result, (4.12) yields that

p∞ = lim
t→∞

p(t) = 0.

Next, upon integrating (4.12), interchanging the order of integration, and then using (4.5) and (4.6), we
get ∫ ∞

0
p(t) dt = p0 +

σ1

|Ω|

∫ ∞

0
I1(t) dt +

σ2

|Ω|

∫ ∞

0
I2(t) dt, (4.14)

which implies that
∫ ∞

0
p(t) dt < ∞.
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We then substitute (4.14) into (4.10) and (4.11) to get

log
S 10

S 1∞
=
β1σ1

|Ω|

∫ ∞

0
I1(t)dt +

β1σ2

|Ω|

∫ ∞

0
I2(t)dt +

β1σ1

2πD0

∫ ∞

0
I1(t)dt + β1 p0,

and
log

S 20

S 2∞
=
β2σ1

|Ω|

∫ ∞

0
I1(t)dt +

β2σ2

|Ω|

∫ ∞

0
I2(t)dt +

β2σ2

2πD0

∫ ∞

0
I2(t)dt + β2 p0,

which yields the final size relation

log
S 10

S 1∞
=
β1σ1N1(0)
φ1|Ω|

{
1 −

S 1∞

N1(0)

}
+
β1σ2N2(0)
φ2|Ω|

{
1 −

S 2∞

N2(0)

}
+
β1σ1N1(0)

2πφ1D0

{
1 −

S 1∞

N1(0)

}
+ β1 p0,

and

log
S 20

S 2∞
=
β2σ1N1(0)
φ1|Ω|

{
1 −

S 1∞

N1(0)

}
+
β2σ2N2(0)
φ2|Ω|

{
1 −

S 2∞

N2(0)

}
+
β2σ2N2(0)

2πφ2D0

{
1 −

S 2∞

N2(0)

}
+ β2 p0.

These expressions can be written by using R1 =
N1(0)σ1

φ1|Ω|
and R2 =

N2(0)σ2

φ2|Ω|
, as

log
S 10

S 1∞
= β1

(
R1

{
1 −

S 1∞

N1(0)

}
+ R2

{
1 −

S 2∞

N2(0)

}
+
σ1N1(0)
2πφ1D0

{
1 −

S 1∞

N1(0)

})
+ β1 p0,

and
log

S 20

S 2∞
= β2

(
R1

{
1 −

S 1∞

N1(0)

}
+ R2

{
1 −

S 2∞

N2(0)

}
+
σ2N2(0)
2πφ2D0

{
1 −

S 2∞

N2(0)

})
+ β2 p0,

where we used (4.3), which implies S 1∞ > 0 and S 2∞ > 0. In the case where the outbreak begins with
no contact with pathogen, so that p0 = 0, the final size relation for patch 1 and 2 can be written as

log
S 10

S 1∞
= β1

(
R1

{
1 −

S 1∞

N1(0)

}
+ R2

{
1 −

S 2∞

N2(0)

}
+
σ1N1(0)
2πφ1D0

{
1 −

S 1∞

N1(0)

})
,

(4.15)

log
S 20

S 2∞
= β2

(
R1

{
1 −

S 1∞

N1(0)

}
+ R2

{
1 −

S 2∞

N2(0)

}
+
σ2N2(0)
2πφ2D0

{
1 −

S 2∞

N2(0)

})
.

In the well-mixed limit of asymptotically large diffusion in which D0 → ∞, the final size relation
(4.15) becomes

log
S 10

S 1∞
= β1

(
R1

{
1 −

S 1∞

N1(0)

}
+ R2

{
1 −

S 2∞

N2(0)

})
,

log
S 20

S 2∞
= β2

(
R1

{
1 −

S 1∞

N1(0)

}
+ R2

{
1 −

S 2∞

N2(0)

})
.

(4.16)

This result can be written in matrix form as
log

S 10

S 1∞

log
S 20

S 2∞

 =


T11 T12

T21 T22




1 −
S 1∞

N1(0)

1 −
S 2∞

N2(0)

 , where T =


β1R1 β1R2

β2R1 β2R2

 . (4.17)

Note that the total number of infected populations in patch 1 and 2 over the period of the epidemic
are respectively N1 − S 1∞ and N2(0) − S 2∞, and can be described in terms of the attack rate

(
1 −

S 1∞/N1(0)
)

and
(
1 − S 2∞/N2(0)

)
as in [5].

Mathematical Biosciences and Engineering Volume 5, Issue x, xxx–xxx



21

4.3. Numerical simulation for two-patch model

Here, we present numerical simulations of the dimensional coupled PDE-ODE model (4.1) and the
reduced system of ODEs (4.2) for the case of two population patches. Our goal is to study the spread
of infection between and within these populations. For the coupled PDE-ODE model, our patches are
centered at xxx1 = (0.5, 0) and xxx2 = (−0.5, 0) for patches 1 and 2, respectively.

The results in Figure 4 show the proportion of infected individuals for the two patches in the case
where the outbreak begins with no pathogen in the air (P(0) = p(0) = 0), only one infected individual
in patch 1 (I1(0) = 1/250), and no infections in patch 2 (I2(0) = 0). The population patches are
assumed to be identical with parameters as given in Table 2.

Table 2. Parameter Descriptions and Values for the Two-Patch Model.

Parameter Description Patch 1, 2 values
µ (β) dimensional (dimensionless) effective

contact rate
0.3, 1.2 [3]

(
computed using (2.8)

)
r (σ) dimensional (dimensionless) pathogen

shedding rate
0.1, 1 [30]

(
computed using (2.8)

)
α (φ) dimensional (dimensionless) removed

rate for infected individuals
1.87 [30]

(
computed using (2.8)

)
N1,N2 total population 300, 250
δ dimensionless decay rate of pathogens 0.25
pc typical value for density of pathogens 0.01
ε radius of the population patch 0.02
|Ω| area of the domain (unit disk) π

Figures 4(a) and 4(b) show the result obtained from the reduced system of ODEs (4.2) and the
coupled PDE-ODE model (4.1) respectively, for different diffusion rates.

Similar to the results for a single population patch, epidemic take-off is delayed, and epidemic
size decreases as the diffusion rate increases. When the diffusion rate is small, there is a delay in the
epidemic take-off time in patch 2, and this delay decreases as the diffusion rate increases. The observed
delays are due to the time it takes the pathogens shed in patch 1 to diffuse to patch 2, since there are
no pathogens in the air, and no infections in patch 2 at the beginning of the epidemic. As the diffusion
rate increases, the time it takes the pathogens to diffuse from patch 1 to patch 2 decreases, thereby
decreasing the delay in epidemic take-off in the second population. In the limit where the diffusion
rate becomes asymptotically large, the epidemics starts at approximately the same time in the two
population patches for both models. Observe that the delay in epidemic take-off time in the second
population is more obvious in the results from the coupled PDE-ODE model in Figure 4(b) than those
of the reduced system of ODEs in Figure 4(a). This is because the system of ODEs is valid in the limit
where the diffusion rate of the pathogens D = O(ν−1), where ν = −1/ log ε with ε � 1. In this limit,
the pathogens are already diffusing fast enough to reduce the time it takes them to travel from patch
1 to patch 2. This reduces the delay in take-off time of the epidemic in patch 2. As D,D0 → ∞, the
system becomes well-mixed, and the predictions for the two model agree (D = D0 = 300).

When there is a pathogen at the beginning of the outbreak (P(0) = p(0) = 1), with only one infected
individual in patch 1 (I1(0) = 1/250) and no infectives in patch 2 (I2(0) = 0), the epidemics start
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(a) Simulation of the reduced system of ODE
(4.2).
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(b) Simulation of the coupled PDE-ODE (4.1).

Figure 4. The dynamics of the proportion of infected individuals I(t) for different diffusion
rates, and all other parameters as in Table 1. (a) shows the results for patches 1 and 2 ob-
tained from the reduced system of ODEs (4.2) with initial conditions (S 1(0), I1(0),R1(0)) =

(249/250, 1/250, 0), (S 2(0), I2(0),R2(0)) = (250/250, 0, 0) and p(0) = 0, and (b) shows sim-
ilar results obtained with the coupled PDE-ODE model (4.1) for the same initial conditions
in the patches as the ODEs and P(0) = 0 for the diffusing pathogens. In both plots, the solid
lines represents patch 1, while the dashed lines are for patch 2.
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(a) Simulation of the reduced system of ODE
(4.2).
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(b) Simulation of the coupled PDE-ODE
(4.1).

Figure 5. The dynamics of infected I(t) for different diffusion rates of pathogen, and all other
parameters as in Table 1. (a) shows the results obtained for patches 1 and 2 from the reduced
system of ODEs (4.2) with initial conditions (S 1(0), I1(0),R1(0)) = (249/250, 1/300, 0),
(S 2(0), I2(0),R2(0)) = (250/250, 0, 0), and p(0) = 1, while (b) shows similar results obtained
from the coupled PDE-ODE model (4.1) with the same initial conditions for the ODEs in the
patches and P(0) = 1 for the diffusing pathogens. In both plots, the solid lines represent of
patch 1, while the dashed lines are for patch 2.
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in the two patches at approximately the same time for both models, irrespective of the diffusion rate
of pathogens. This occurs simply because there are pathogens in the air close to the second patch at
time t = 0, which cause infections to spread into the population immediately. These results are shown
in Figure 5. The parameters and initial conditions used are the same as those used for the results in
Figure 4 except for the initial density of pathogen p(0) = P(0) = 1.

For a scenario with two distinct patches where the transmission of infections and shedding of
pathogens are done at different rates (a more realistic scenario), the reduced system of ODEs (4.2)
predicts slightly different results from the coupled PDE-ODE model (4.1). These results are shown
in Figure 6. The dimensional transmission and shedding rates in patch 1 are µ1 = 0.3 and r1 = 0.1,
respectively, while in patch 2 are µ2 = 1.2 and r2 = 1 respectively (their dimensionless equivalents can
be computed with (2.8)). Figures 6(a) and 6(b) show the proportion of infected individuals in patches
1 and 2, respectively, obtained using the reduced system of ODEs (4.2) with different values of D0,
while Figures 6(c) and 6(d) show similar results for the coupled PDE-ODE model (4.1). We observe
from these figures that even though there are no infections in patch 2 when the outbreak begins, there
are still more infections occurring in patch 2 than in patch 1. This occurs simply because patch 2 has a
higher shedding and transmission rate. Higher shedding and transmission rates imply more pathogens
are shed and transmitted faster in patch 2 than in patch 1.

When the diffusion rate is small or asymptotically large, the estimates from the two models agree
qualitatively. However, this is not the case for intermediate diffusion rates. For these rates, the coupled
PDE-ODE model shows no significant difference in the epidemic take-off times in patch 1 for different
values of D, although, the maximum number of proportion of infectives at a given time is different
(see the results for D = 0.5 and D = 10 in Figure 6(c)). This is due to the fact that the transmission
and shedding of pathogens are done at higher rates in patch 2 relative to patch 1. The pathogens shed
in patch 2 diffuse to patch 1, thereby causing the epidemic in patch 1 to occur earlier than one would
have expected if the populations were identical or the patches are farther away from each other. As
the distance between the two patches increases, the effect of the pathogens shed in patch 2 on the
population in patch 1 decreases. This qualitative effect is discussed in detail in Section 5, where we
study the effect of patch locations on the spread of infections.

5. Effect of patch location on the spread of infection

So far, we have studied the effect of the diffusion rate of pathogens on the spread of infections
within and between populations, and we have not considered the effect of the location of the patches.
In this section, we study the effect of patch location on the dynamics of infections by analyzing the
two-term (extended model) reduced system of ODEs, as given in (2.31), which involves the Neumann
Green’s matrix characterizing the spatial interaction between patches. This extended ODE system is
then used to compute the basic reproduction number and the final size relation, which now depends
on the locations of the patches. In addition, we present some numerical simulations for two patches
equally-placed on a ring of radius r, with 0 < r < 1, concentric within a unit disk, and we study how
the proportion of infected individuals changes as the distance between the patch locations is varied.

5.1. Effect of patch location on the basic reproduction number

In our analysis below we assume that our domain is a unit disk and that the patches are equally-
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(a) Patch 1 for ODE model (4.2).
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(b) Patch 2 for ODE model (4.2).
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(c) Patch 1 for coupled PDE-ODE model (4.1).
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(d) Patch 2 for coupled PDE-ODE model (4.1).

Figure 6. The dynamics of infected I(t) for different diffusion rates, and all other pa-
rameters as in Table 2. (a) and (b) show the results obtained from the reduced system of
ODEs (4.2) for patches 1 and 2, respectively, with initial conditions (S 1(0), I1(0),R1(0)) =

(299/300, 1/300, 0), (S 2(0), I2(0),R2(0)) = (250/250, 0, 0), and p(0) = 1, while (c) and (d)
show similar results obtained by solving the coupled PDE-ODE model (4.1) with the same
initial conditions for the ODEs in the patches, and with P(0) = 1 for the diffusing pathogens.

Mathematical Biosciences and Engineering Volume 5, Issue x, xxx–xxx



25

placed on a ring of radius r, with 0 < r < 1, which is concentric within the disk. Here, we derive an
expression for the basic reproduction number using (2.31), while following the analytical framework
used in Section 4. From the reduced system of ODEs (2.31), we construct our infectious classes for m
patches as

dI j

dt
= β jS j

(
P0(t) +

σ j I j

2πD0

)
+

ν

D0
β jS jΨ j − φ jI j, j = 1, . . . ,m,

dp
dt

= −p +
1
|Ω|

m∑
j=1

σ j I j.

(5.1)

Here, Ψ j = (GΦ) j is the jth entry of the vector GΦ, with Φ = (σ1I1, . . . σmIm)T , and G is the Neumann
Green’s matrix defined in (2.32). The resulting ODE system is an (m + 1) dimensional system of
equations for the infected classes I1, . . . , Im, and the pathogens p. At the disease free equilibrium state,
we construct the Jacobian matrix F for the new infections as

F =

(
∂Fi

∂x j

)
i, j

=



β1N1(0)
D0

(
σ1
2π + ν∂Ψ1

∂I1

)
νβ2N2(0)

D0

∂Ψ1
∂I2

. . . νβmNm(0)
D0

∂Ψ1
∂Im

β1N1(0)

νβ1N1(0)
D0

∂Ψ2
∂I1

β2N2(0)
D0

(
σ2
2π + ν∂Ψ2

∂I2

)
. . . νβmNm(0)

D0

∂Ψ2
∂Im

β2N2(0)

...
...

. . .
...

...

νβ1N1(0)
D0

∂Ψm
∂I1

νβ2N2(0)
D0

∂Ψm
∂I2

. . . βmNm(0)
D0

(
σm
2π + ν∂Ψm

∂Im

)
βmN0

m

0 0 0 0 0



, (5.2)

where the functions F j ≡ I′j for j = 1, . . . ,m, and Fm+1 ≡ p′ are as given in (5.1), x j ≡ I j for
j = 1, . . . ,m, and xm+1 ≡ p. Similarly, from (5.1), we construct the Jacobian matrix V for the transfer
of infections between compartments, evaluated at the disease free equilibrium state as

V =

(
∂Vi

∂x j

)
i, j

=



φ1 0 0 . . . 0
0 φ2 0 . . . 0
...

...
. . .

... 0
0 0 0 . . . φm

−
σ1

|Ω|
−
σ2

|Ω|
. . . −

σm

|Ω|
1


. (5.3)

For the case of two population patches, the Jacobian matrices (5.2) and (5.3) reduce to

F =



β1N1(0)
D0

(
σ1

2π
+ ν

∂Ψ1

∂I1

)
νβ2N2(0)

D0

∂Ψ1

∂I2
β1N1(0)

νβ1N1(0)
D0

∂Ψ2

∂I1

β2N2(0)
D0

(
σ2

2π
+ ν

∂Ψ2

∂I2

)
β2N2(0)

0 0 0


and V =



φ1 0 0

0 φ2 0

−
σ1

|Ω|
−
σ2

|Ω|
1


.

Mathematical Biosciences and Engineering Volume 5, Issue x, xxx–xxx



26

Upon calculating the inverse of the matrix V , and then multiplying by the matrix F from the left, we
construct our next generational matrix as

FV−1 =



β1N1(0)
φ1D0

(
σ1

2π
+
σ1D0

|Ω|
+ ν

∂Ψ1

∂I1

)
νβ2N2(0)
φ2D0

∂Ψ1

∂I2
+
σ2β1N1(0)
φ2|Ω|

β1N1(0)

νβ1N1(0)
φ1D0

∂Ψ2

∂I1
+
σ1β2N2(0)
φ1|Ω|

β2N2(0)
φ2D0

(
σ2

2π
+
σ2D0

|Ω|
+ ν

∂Ψ2

∂I2

)
β2N2(0)

0 0 0


. (5.4)

The dominant eigenvalue of the next generational matrix is our desired basic reproduction number.
From a computation of the eigenvalues of (5.4), we derive a two term asymptotic expansion for the
basic reproduction number given by

R = R0 + νR1 + O(ν2), (5.5)

where R0 ≡ R0 is the leading-order basic reproduction number given in (4.8), and the O(ν) term R1 is
given by

R1 =
1

φ1φ2D0

N2 +
4πφ1φ2D0� + (|Ω| + 2πD0)H♠√
(|Ω|2 + 4π|Ω|D0)♠2 + 4π2D2

0♣
2

 , (5.6)

where the quantities N, H and �, are defined by

N ≡ β1N1(0)φ2
∂Ψ1

∂I1
+ β2N2(0)φ1

∂Ψ2

∂I2
, H ≡ β1N1(0)φ2

∂Ψ1

∂I1
− β2N2(0)φ1

∂Ψ2

∂I2
,

� ≡(β1N1(0))2σ2
∂Ψ2

∂I1
+ (β2N2(0))2σ1

∂Ψ1

∂I2
.

(5.7)

Here, the variables ♠ and ♣ are as defined in (4.8), and Ψ j for j = 1, 2 are as defined in (2.31). Since
there are only two patches, we can use (2.31) to construct Ψ1 and Ψ2 explicitly as

Ψ1 = σ1I1R1 + σ2I2 G(xxx1; xxx2), and Ψ2 = σ1I1 G(xxx2; xxx1) + σ2I2R2,

where R j ≡ R(xxx j) is the regular part of the Neumann Green’s function G(xxxi; xxx j) at xxx = xxx j. Upon
differentiating Ψ1 and Ψ2, with respect to I1 and I2, we obtain

∂Ψ1

∂I1
= σ1R1,

∂Ψ1

∂I2
= σ2 G(xxx1; xxx2),

∂Ψ2

∂I1
= σ1 G(xxx2; xxx1), and

∂Ψ2

∂I2
= σ2R2. (5.8)

To evaluate these derivatives explicitly, as are needed in (5.7), we must determine the Neumann Green’s
function G(xxxi; xxx j) and its regular part R j, as obtained by solving (2.25) in the unit disk. These results
are well-known (see equation (4.3) of [20]), and we have

G(xxx;ξξξ) = −
1

2π
log |xxx − ξξξ| −

1
4π

log
(
|xxx|2|ξξξ|2 + 1 − 2xxx · ξξξ

)
+

(|xxx|2 + |ξξξ|2)
4π

−
3

8π
,

R(ξξξ) = −
1

2π
log

(
1 − |ξξξ|2

)
+
|ξξξ|2

2π
−

3
8π

.

(5.9)
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Since the patches are symmetrically located on a ring of radius r, with 0 < r < 1, we can take their
centers as xxx1 = (r, 0) and xxx2 = (−r, 0) for patch 1 and 2, respectively, so that, |xxx1| = |xxx2| = r. Substituting
xxx1 and xxx2 into (5.9), we conclude that

G(xxx1; xxx2) = G(xxx2; xxx1) =
1

2π

(
− log(2r) − log(1 + r2) + r2 −

3
4

)
,

R(xxx1) = R(xxx2) =
1

2π

(
− log(1 − r2) + r2 −

3
4

)
.

(5.10)

Upon substituting (5.10) into (5.8), and then using (5.8) in (5.7), we obtain

N ≡
♣

2π

(
− log(1 − r2) + r2 −

3
4

)
, H ≡

♠

2π

(
− log(1 − r2) + r2 −

3
4

)
,

� ≡
σ1σ2

2π

(
− log(2r) − log(1 + r2) + r2 −

3
4

) [
(β1N1(0))2 + (β2N2(0))2

]
,

(5.11)

where ♣ and ♠ are given by

♣ = β1N1(0)φ2σ1 + β2N2(0)φ1σ2 and ♠ = β1N1(0)φ2σ1 − β2N2(0)φ1σ2. (5.12)

Therefore, the O(ν) term in the basic reproduction number (5.5) can be computed by substituting
(5.12) and (5.11) into (5.6). By using the leading-order basic reproduction number R0, as given in
(4.8), together with R1 in (5.5), we arrive at an explicit two term asymptotic expansion for the basic
reproduction R, which depends on the locations of the patches. Notice that the dependence on the
location comes into R through only the O(ν) term, which involves the Green’s function.

5.2. Effect of patch location on the final size relation

In the previous subsection, for a special two-patch configuration where the patches are equally
spaced on a ring concentric within the disk, we derived a two-term asymptotic formula for the basic
reproduction number. In this subsection, we study the effect of patch location on the final size of the
epidemic.

From (2.31), a two term asymptotic expansion of the reduced system of ODEs for the case of two
population patches is given by

dp
dt

= −p +
1
|Ω|

(σ1 I1 + σ2 I2), (5.13a)

Patch 1 Patch 2
dS 1

dt
= −β1S 1 p − β1S 1

(
σ1 I1

2πD0

)
−

ν

D0
β1S 1Ψ1

dS 2

dt
= −β2S 2 p − β2S 2

(
σ2 I2

2πD0

)
−

ν

D0
β2S 2Ψ2,

dI1

dt
= β1S 1 p + β1S 1

(
σ1 I1

2πD0

)
+

ν

D0
β1S 1Ψ1 − φ1I1,

dI2

dt
= β2S 2 p + β2S 2

(
σ2 I2

2πD0

)
+

ν

D0
β2S 2Ψ2 − φ2I2,

(5.13b)
dR1

dt
= φ1I1,

dR2

dt
= φ2I2 ,
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where p(t) is the leading-order density of pathogens in the air, S j, I j,R j are the susceptible, infected,
and removed, respectively, in the jth patch for j = 1, 2. Here, Ψ1 = σ1I1R1 + σ2I2 G(xxx1; xxx2) and
Ψ2 = σ1I1 G(xxx2; xxx1) +σ2I2R2, and G(xxx1; xxx2) = G(xxx1; xxx1) is the Neumann Green’s function and R1 = R2

is it regular part at the points xxx1 and xxx2. This system of ODEs depends on the locations of the patches,
and the dependence arises from the O(ν) terms.

Following the same approach as in subsection (4.2), we integrate the S 1 and S 2 equations in (5.13b)
to obtain

log
S 10

S 1∞
= β1

∫ ∞

0
p(t) dt +

β1σ1

2πD0

∫ ∞

0
I1(t) dt +

β1ν

D0

∫ ∞

0
Ψ1 dt. (5.14)

and

log
S 20

S 2∞
= β2

∫ ∞

0
p(t) dt +

β2σ2

2πD0

∫ ∞

0
I2(t) dt +

β2ν

D0

∫ ∞

0
Ψ2 dt. (5.15)

The integrals of Ψ1 and Ψ2 are given by∫ ∞

0
Ψ1 dt = σ1R1

∫ ∞

0
I1(t) dt + σ2 G(xxx1; xxx2)

∫ ∞

0
I2(t) dt

and ∫ ∞

0
Ψ2 dt = σ1 G(xxx2; xxx1)

∫ ∞

0
I1(t) dt + σ2R2

∫ ∞

0
I2(t) dt

Similarly, the integral of (5.13a) is given by (4.14). Upon substituting (4.14) into (5.14) and (5.15),
and assuming that the outbreak begins with no epidemic (p0 = 0), the final size relation is given by

log
S 10

S 1∞
=
β1σ1N1(0)
φ1|Ω|

{
1 −

S 1∞

N1(0)

}
+
β1σ2N2(0)
φ2|Ω|

{
1 −

S 2∞

N2(0)

}
+
β1σ1N1(0)

2πφ1D0

{
1 −

S 1∞

N1(0)

}
+
β1 ν

D0

[σ1R1N1(0)
φ1

{
1 −

S 1∞

N1(0)

}
+
σ2G(xxx1; xxx2)N2(0)

φ2

{
1 −

S 2∞

N2(0)

}]
,

and
log

S 20

S 2∞
=
β2σ1N1(0)
φ1|Ω|

{
1 −

S 1∞

N1(0)

}
+
β2σ2N2(0)
φ2|Ω|

{
1 −

S 2∞

N2(0)

}
+
β2σ2N2(0)

2πφ2D0

{
1 −

S 2∞

N2(0)

}
+
β2 ν

D0

[σ2R2N2(0)
φ2

{
1 −

S 2∞

N2(0)

}
+
σ1G(xxx2; xxx1)N1(0)

φ1

{
1 −

S 1∞

N1(0)

}]
,

which can be written as

log
S 10

S 1∞
= β1

(
R1

{
1 −

S 1∞

N1(0)

}
+ R2

{
1 −

S 2∞

N2(0)

}
+
σ1N1(0)
2πφ1D0

{
1 −

S 1∞

N1(0)

}
+
ν

D0

[σ1R1N1(0)
φ1

{
1 −

S 1∞

N1(0)

}
+
σ2G(xxx1; xxx2)N2(0)

φ2

{
1 −

S 2∞

N2(0)

}])
,

(5.16)

log
S 20

S 2∞
= β2

(
R1

{
1 −

S 1∞

N1(0)

}
+ R2

{
1 −

S 2∞

N2(0)

}
+
σ2N2(0)
2πφ2D0

{
1 −

S 2∞

N2(0)

}
+
ν

D0

[σ2R2N2(0)
φ2

{
1 −

S 2∞

N2(0)

}
+
σ1G(xxx2; xxx1)N1(0)

φ1

{
1 −

S 1∞

N1(0)

}])
,
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where R1 = σ1N1(0)/(φ1|Ω|) and R2 = σ2N2(0)/(φ2|Ω|). Upon writing (5.16) in matrix form, we have
log

S 10

S 1∞

log
S 20

S 2∞


=

(
A + B +

ν

D0
C

) 
1 −

S 1∞

N1(0)

1 −
S 2∞

N2(0)

 , (5.17)

where the matrices A, B, and C are defined by

A =


β1R1 β1R2

β2R1 β2R2

 , B =



σ1β1N1(0)
2πφ1D0

σ2β2N2(0)
2πφ2D0


and C =



σ1β1R1N1(0)
φ1

σ2β1G(xxx1; xxx2)N2(0)
φ2

σ1β2G(xxx2; xxx1)N1(0)
φ1

σ2β2R2N2(0)
φ2

.


.

In this way, we have derived a two term expansion of the final size relation that depends on the
location of the patches. Similar to the basic reproduction number (5.5), the dependence on the location
comes into this result at theO(ν) term through the Green’s function and its regular part. The explanation
of the final size follows from subsecion 4.2.

5.3. Numerical simulation for two patch model with effect of patch location

Next, we present some surface plots of the basic reproduction number R in (5.5) and its O(ν) cor-
rection term R1, defined in (5.6), with respect to the location of the patches. Our plots are for different
values of the dimensionless transmission rates β1 and β2 for patches 1 and 2, respectively. In addition,
we show some numerical simulations of the reduced system of ODEs (5.13) and the coupled PDE-
ODE model (4.1) for two patches. The system of ODEs is solved using the MATLAB numerical ODE
solver ODE45 [25], while the PDE is solved using FlexPDE [26]. Our goal is to numerically study the
effect of patch location on the spread of infections and the final epidemic size.

Figure 7 shows the surface plot of the O(ν) term of the basic reproduction number, R1 (5.6) (first
row), and the basic reproduction numberR (5.5) (second row) with respect to the location of the patches
and the transmission rates of the two patches. For each of the results in this figure, the transmission
rate β1 (vertical axis) is plotted against the distance of the patches from the center of the unit disk
(horizontal axis). A fixed value of β2 is used for each column, with the value increasing from left to
right (β2 = 0.1, 0.4, 0.8, 1.2). Since r is the distance from the center of each patch to the center of
the unit disk, for each value of r, the distance between the centers of the two patches is 2r. The O(ν)
term R1 shows how the leading-order basic reproduction number R0 ≡ R0 (4.9) is perturbed by the
locations of the patches. Note that we have omitted the surface plots of R0 from this figure because it
is independent on the location of the patches.

The first row of Figure 7 shows that R1 may increase or decrease R depending on the location of the
patches and the transmission rates. When the transmission rate in patch 2 is β2 = 0.1 (Figures 7(a)), we
observe that R1 has high values when r is small and β1 is high. In this case, where the two patches are
close to each other, the infection is transmitted at a high rate in patch 1. As the distance between the
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(a) β2 = 0.1 (b) β2 = 0.4 (c) β2 = 0.8 (d) β2 = 1.2

Figure 7. Surface plots of the basic reproduction number R (5.5) (second row) and its O(ν)
term R1 (5.6) (first row) with respect to the distance of the patches from the center of a unit
disk r, for different values of the transmission rates β1 and β2 for patches 1 and 2, respectively.
The parameters used are given in Table 2 except for pc = 450, with diffusion rate D0 = 5.
For each of the graphs, β1 (vertical axis) is plotted against r (horizontal axis). The value of
β2 changes for each column from left to right in increasing order. The term R1 shows how
the leading-order basic reproduction number R0 is perturbed by the location of the patches.
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two patches increases (r increases), the value of R1 decreases for all values of β1 and it attains negative
values for some values of β1. For this range, R1 decreases the leading-order basic reproduction number
R0. These figures show that for all values of β2, there are more infections (R and R1 high) when the
two patches are closer to each other (r small), as compared to when they are farther apart (r large). In
addition, as the transmission rate β2 increases (from left to right in Figure 7), the surface plot of R1 in
the r, β1 parameter space changes, and the effect of the reflecting boundary of the unit disk becomes
apparent. For each value of β2, the corresponding effect of R1 on the overall basic reproduction number
R is shown in the second row of Figure 7. When β2 = 1.2, we observe that higher values of R1 occur for
smaller values of r (when the two patches are close to each other) and for values of r close to 1 (when
the patches are close to the boundary of the disk). When the patches become closer to the reflecting
boundary of the unit disk, they see a reflection of themselves through the boundary. This leads to a
feedback-effect whereby the reflection of pathogen from the boundary returns back to the patches. This
boundary effect, as evident in the surface plot of the basic reproduction number R in Figure 7(d), leads
to a higher level of infections.

The numerical simulations of the coupled PDE-ODE model (4.1) and the reduced system of ODEs
(5.13) for two patches in the unit disk are shown in Figure 8. For a fixed diffusion rate of pathogens,
these two models are solved numerically for different locations of the patches. The location of each
patch is given in terms of the parameter r, which measures the distance between the center of the patch
and the center of the unit disk. Both patches have the same parameters except for the transmission
rates of infection, and the shedding rate of pathogens (see Table 2). In addition, both patches have one
infective at the beginning of the outbreak, and the density of pathogens in the air is fixed at p(0) =

P(0) = 1.
Figures 8(a) and 8(b) show the results obtained from the reduced system of ODEs (5.13) for patches

1 and 2, respectively, while Figures 8(c) and 8(d) show similar results for the coupled PDE-ODE model
(4.1). For each radius r, the epidemic in patch 2 (right column of Figure 8) is more than that in patch 1
for both models, owing to the fact that patch 2 has higher transmission and shedding rates than patch 1
(see Table 2 for the parameters). As the radius of the ring (on which the patches are located) increases,
that is, as the distance between the centers of the two patches increases, the size of the epidemic in
patch 1 decreases, while there seems to be no significant difference in the size of the epidemic in patch
2. Since the shedding rate of pathogens in patch 2 is larger than that of patch 1, the density of pathogens
in the air around patch 2 at each point in time is higher than those around patch 1. As a result, when the
two patches are closer to each other, the pathogens shed from patch 2 can easily diffuse to patch 1, and
lead to more infections in the population. This effect depends on the proximity of the two patches, and
it weakens as the patches move farther away from each other. This explains why infections in patch 1
decrease as the distance in the two patches increases. This observation is more prominent in the results
obtained from the PDE-ODE model than in the the system of ODEs. This is due to the fact that the
ODE system is valid in the limit D � O(ν−1), with ν = −1/ log ε and ε � 1. In this regime where the
pathogens are diffusing fast, spatial gradients in the pathogen density are smoothed out, and as a result
the proximity of patch 2 to patch 1 seems to have no significant effect on the epidemic in patch 2.

However, as both patches move closer to the boundary of the domain, they receive signals of
pathogens that is of equal strength as their shedding rates from the boundary (since the boundary
is reflecting). In this way, there is an increasing infection in both patches as they move closer to the
boundary. This observation is noticeable in the patch 2 dynamics shown in Figures (8(b)) and (8(d)),
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(a) Patch 1 for ODE model (4.2).
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(b) Patch 2 for ODE model (4.2).
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(c) Patch 1 for coupled PDE-ODE model (4.1).
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(d) Patch 2 for coupled PDE-ODE model (4.1).

Figure 8. The dynamics of infected I(t) for different ring radius r. (a) and (b) show the re-
sults obtained from the reduced system of ODEs (5.13) for patches 1 and 2, respectively,
with initial conditions (S 1(0), I1(0),R1(0)) = (299/300, 1/300, 0), (S 2(0), I2(0),R2(0)) =

(250/250, 0, 0), and p(0) = 1, while (c) and (d) show similar results obtained from the cou-
pled PDE-ODE model (4.1) with the same initial conditions for the ODEs in the patches and
P(0) = 1 for the diffusing pathogens. The diffusion rate of pathogens is fixed at D0 = D = 5,
while all other parameters are as given Table 2.
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due to its high shedding rate. Specifically, it is more apparent in Figure 8(b) than in Figure 8(d) be-
cause the system of ODEs used to obtain Figure 8(b) are only valid in the limit where the pathogens
are diffusing very fast. We observe from these simulations that the estimates and predictions of both
models qualitatively agree, even though the ODE model is only valid in the limit D � O(ν−1).

6. Discussion

We developed and analyzed a coupled PDE-ODE model for studying the spread of airborne diseases
with indirect transmission. This model improves previously developed epidemic models for indirect
transmission [7, 13] by incorporating the movement of pathogens, which is modeled with linear dif-
fusion. Human populations are modeled as circular patches, that are small relative to the length scale
of the domain, where each patch has an SIR dynamics for the population of susceptible, infected, and
removed, respectively. The diffusion of pathogens is restricted to the region outside the patches, while
human movement is not considered. In our model, a susceptible individual becomes infected only by
coming in contact with the pathogens (indirect transmission), and the spread of infection within a patch
depends on the density of pathogens around the patch. In the limit D = O(ν−1) with ν = −1/ log ε and
ε � 1 (when the pathogens are diffusing fast), the coupled PDE-ODE model is reduced to a nonlinear
system of ODEs. This system of ODEs was then analyzed and used to compute the basic reproduction
number and the final size relation. Furthermore, the full PDE-ODE model and the reduced system of
ODEs were solved numerically, and their results agreed qualitatively.

The numerical simulations for both the coupled model and the reduced system of ODEs predicted
a decrease in the epidemic as the diffusion rate of pathogens increases, and the two models agreed
in the limit D,D0 → ∞. When pathogens are diffusing slowly, it takes longer for them to diffuse
away from the patches after shedding, and as a result, more infections occur. On the other hand, when
the diffusion rate is high, pathogens diffuse away from the patches immediately after shedding, which
thereby reduces infections. When there are two patches, where infection starts from only one of the
patches with the other patch being disease free, and with no pathogens in the air, our models predict a
delay in epidemic take-off time in the second population when pathogens diffuse slowly. This occurs
as a result of the time required for pathogens to diffuse from the infected patch to the other patch. As
the diffusion rate increases, the delay in epidemic take-off time decreases. The results of our model
seem consistent with other previous results [12, 17, 19, 22, 23, 29], where human populations were
modeled with a PDE approach. Furthermore, we studied the effect of patch location on the spread of
infection. Our models predicted more infections when the two patches are close to each other, and less
infections when when the patches are farther apart.

In our model, we have assumed that the amount of pathogens in a patch can be accounted for by
knowing the density of pathogens around the patch, and individuals do not move between patches.
This assumption may not be true for all real-life scenarios as the amount of pathogens in a patch may
be different from the density around the patch. Also, people may move between cities and towns.
Our model can be extended to incorporate human mobility between patches. This can be achieved
by allowing both humans and pathogens to diffuse in the bulk region, or by using the approach of
meta population dynamics, in which individuals are transferred from one patch to another without
modeling their movement explicitly, or by using Lagrangian method to keep track of individuals’ place
of residence at different time. In addition to this, we can allow for infections to be transmitted in the
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bulk region when a susceptible individual comes in contact with the diffusing pathogens. This would
lead to a reaction-diffusion type model in the bulk region. Furthermore, similar models (indirect and/or
direct transmission model) can be developed for other diseases such as malaria, where the mosquitoes
diffuse in the bulk region and human populations are modeled with patches. Mosquito reservoirs
can also be incorporated into the modeling framework, where an ODE system is used to describe the
mosquito life cycle from egg to adult.

Notwithstanding all of these limitations and assumptions, we believe that our proposed novel ap-
proach to modeling airborne diseases, where the movement of pathogens is explicitly modeled with
linear diffusion, will significantly contribute to knowledge and may be seen as a better approach. Our
analysis and full numerical computations suggest that disease dynamics can be adequately studied with
our more tractable reduced ODE model, instead of the more intricate PDE-ODE coupled model. The
presence of the parameter D0 in the reduced ODE system makes it easier to study the effect of diffu-
sion on disease transmission. Furthermore, the extended system of ODEs, which includes weak spatial
effects through a Green’s interaction matrix, allowed us to study the effect of patch location on disease
dynamics. Including this spatial information encoded in the Green’s matrix allows for characterizing
the effect of the spatial distribution of patches on disease transmission between spatially segregated
populations.
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