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Abstract. The determination of the mean first passage time (MFPT) for a Brownian particle in6
a bounded 2-D domain containing small absorbing traps is a fundamental problem with biophysical7
applications. The average MFPT is the expected capture time assuming a uniform distribution of8
starting points for the random walk. We develop a hybrid asymptotic-numerical approach to predict9
optimal configurations of m small stationary circular absorbing traps that minimize the average10
MFPT in near-disk and elliptical domains. For a general class of near-disk domains, we illustrate11
through several specific examples how simple, but yet highly accurate, numerical methods can be used12
to implement the asymptotic theory. From the derivation of a new explicit formula for the Neumann13
Green’s function and its regular part for the ellipse, a numerical approach based on our asymptotic14
theory is used to investigate how the spatial distribution of the optimal trap locations changes as the15
aspect ratio of an ellipse of fixed area is varied. The results from the hybrid theory for the ellipse16
are compared with full PDE numerical results computed from the closest point method [10]. For17
long and thin ellipses, it is shown that the optimal trap pattern for m = 2, . . . , 5 identical traps is18
collinear along the semi-major axis of the ellipse. For such essentially 1-D patterns, a thin-domain19
asymptotic analysis is formulated and implemented to accurately predict the optimal locations of20
collinear trap patterns and the corresponding optimal average MFPT.21

1. Introduction. The concept of first passage time arises in various applications22

in biology, biochemistry, ecology, physics, and biophysics (see [6], [7], [20], [15] [23],23

[21], and the references therein). Narrow escape or capture problems are first passage24

time problems that characterize the expected time it takes for a Brownian “particle”25

to reach some absorbing set of small measure. These problems are of singular pertur-26

bation type as they involve two spatial scales: the O(1) spatial scale of the confining27

domain and the O(ε) asymptotically small scale of the absorbing set. Narrow escape28

and capture problems arise in various applications, including estimating the time it29

takes for a receptor to hit a certain target binding site, the time it takes for a diffusing30

surface-bound molecules to reach a localized signaling region on the cell membrane,31

or the time it takes for a predator to locate its prey, among others (cf. [1], [2], [4],32

[3], [9], [16], [24], [19], [15]). A comprehensive overview of the applications of narrow33

escape and capture problems in cellular biology is given in [8].34

In this paper, we consider a narrow capture problem that involves determining35

the MFPT for a Brownian particle, confined in a bounded two-dimensional domain,36

to reach one of m small stationary circular absorbing traps located inside the domain.37

The average MFPT for this diffusion process is the expected time for capture given a38

uniform distribution of starting points for the random walk. In the limit of small trap39

radius, this narrow capture problem can be analyzed by techniques in strong localized40

perturbation theory (cf. [26], [27]). For a disk-shaped domain spatial configurations41

of small absorbing traps that minimize the average MFPT domain were identified42

in [12]. However, the problem of identifying optimal trap configurations in other43

geometries is largely open. In this direction, the specific goal of this paper is to44

develop and implement a hybrid asymptotic-numerical theory to identify optimal trap45

configurations in near-disk domains and in the ellipse.46

In § 2, we use a perturbation approach to derive a two-term approximation for47
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the average MFPT in a class of near-disk domains in terms of a boundary deformation48

parameter σ ≪ 1. In our analysis, we allow for a smooth, but otherwise arbitrary, star-49

shaped perturbation of the unit disk that preserves the domain area. At each order50

in σ, an approximate solution is derived for the MFPT that is accurate to all orders51

in ν ≡ −1/ log ε, where ε≪ 1 is the common radius of the m circular absorbing traps52

contained in the domain. To leading-order in σ, this small-trap singular perturbation53

analysis is formulated in the unit disk and leads to a linear algebraic system for the54

leading-order average MFPT involving the Neumann Green’s matrix. At order O(σ),55

a further linear algebraic system that sums all logarithmic terms in ν is derived that56

involves the Neumann Green’s matrix and certain weighted integrals of the boundary57

profile characterizing the domain perturbation. In § 3, we show how to numerically58

implement this asymptotic theory by using the analytical expression for the Neumann59

Green’s function for the unit disk together with the trapezoidal rule to compute certain60

weighted integrals of the boundary profile with high precision. From this numerical61

implementation of our asymptotic theory, and combined with either a simple gradient62

descent procedure or a particle swarming approach [11], we can numerically identify63

optimal trap configurations that minimize the average MFPT in near-disk domains.64

In § 3.1, we illustrate our hybrid asymptotic-numerical framework by determining65

some optimal trap configurations in various specific near-disk domains.66

For a general 2-D domain containing small absorbing traps, a singular pertur-67

bation analysis in the limit of small trap radii, related to that in [15], [4], [12], and68

[26], shows that the average MFPT is closely approximated by the solution to a linear69

algebraic system involving the Neumann Green’s matrix. The challenge in implement-70

ing this analytical theory is that, for an arbitrary 2-D domain, a full PDE numerical71

solution of the Neumann Green’s function and its regular part is typically required to72

calculate this matrix. However, for an elliptical domain, in (4.5) and (4.6) below, we73

provide a new explicit representation of this Neumann Green’s function and its regular74

part. These explicit formulae allow for a rapid numerical evaluation of the Neumann75

Green’s interaction matrix for a given spatial distribution of the centers of the circular76

traps in the ellipse. The linear algebraic system determining the average MFPT is77

then coupled to a gradient descent numerical procedure in order to readily identify78

optimal trap configurations that minimize the average MFPT in an ellipse. Although,79

a similar formula for the Neumann Green’s function has been derived previously for a80

rectangular domain (cf. [17], [18], [14]), and an explicit and simple formula exists for81

the disk [12], to our knowledge there has been no prior derivation of a rapidly con-82

verging infinite series representation for the Neumann Green’s function in an ellipse.83

The derivation of this Neumann Green’s function using elliptic cylindrical coordinates84

is deferred until § 5.85

With this explicit approach to determine the Neumann Green’s matrix, in § 486

we develop a hybrid asymptotic-numerical framework to approximate optimal trap87

configurations that minimize the average MFPT in an ellipse of a fixed area. In § 4.188

we implement our hybrid method to investigate how the optimal trap patterns change89

as the aspect ratio of the ellipse is varied. The results from the hybrid theory for the90

ellipse are favorably compared with full PDE numerical results computed from a91

computationally intensive numerical procedure of using the closest point method [10]92

to compute the average MFPT and a particle swarming approach [11] to numerically93

identify the optimum trap configuration. As the ellipse becomes thinner, our hybrid94

theory shows that the optimal trap pattern for m = 2, . . . , 5 identical traps becomes95

collinear along the semi-major axis of the ellipse. In the limit of a long and thin96

ellipse, in § 4.2 a thin-domain asymptotic analysis is formulated and implemented97
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to accurately predict the optimal locations of collinear trap configurations and the98

corresponding optimal average MFPT.99

In § 6, we show that the optimal trap configurations that minimize the average100

MFPT also correspond to trap patterns that maximize the coefficient of orderO(ν2) in101

the asymptotic expansion of the fundamental Neumann eigenvalue of the Laplacian in102

the perforated domain. This fundamental eigenvalue characterizes the rate of capture103

of the Brownian particle by the traps. Eigenvalue optimization problems for the104

fundamental Neumann eigenvalue in a domain with small absorbing traps have been105

studied in [12] for the unit disk. The results herein extend this previous analysis to106

the ellipse and to near-disk domains.107

2. Asymptotics of the MFPT in Near-Disk Domains. We derive an as-108

ymptotic approximation for the MFPT for a class of near-disk 2-D domains that are109

defined in polar coordinates by110

(2.1) Ωσ =
{

(r, θ)
∣

∣

∣ 0 < r ≤ 1 + σh(θ) , 0 ≤ θ ≤ 2π
}

,111

where the boundary profile, h(θ), is assumed to be an O(1), C∞ smooth 2π periodic112

function with
∫ 2π

0
h(θ) dθ = 0. Observe that Ωσ → Ω as σ → 0, where Ω is the unit113

disk. Since
∫ 2π

0
h(θ) dθ = 0, the domain area |Ωσ| for σ ≪ 1 is |Ωσ| = π +O(σ2).114

Inside the perturbed disk Ωσ, we assume that there are m circular traps of a115

common radius ε ≪ 1 that are centered at arbitrary locations x1, . . . ,xm with |xi −116

xj | = O(1) and dist(∂Ωσ,xj) = O(1) as ε → 0. The j-th trap, centered at some117

xj ∈ Ωσ, is labelled by Ωεj = {x : |x − xj | ≤ ε}. The near-disk domain with the118

union of the trap regions deleted is denoted by Ω̄σ. In Ω̄σ, it is well-known that the119

mean first passage time (MFPT) for a Brownian particle starting at a point x ∈ Ω̄σ120

to be absorbed by one of the traps satisfies (cf. [20])121

D∆u = −1 , x ∈ Ω̄σ ; Ω̄σ ≡ Ωσ \ ∪m
j=1Ωεj ,

∂nu = 0 , x ∈ ∂Ωσ ; u = 0 , x ∈ ∂Ωεj , j = 1, . . . ,m .
(2.2)122

In terms of polar coordinates, the Neumann boundary condition in (2.2) becomes123

ur−
σhθ

(1 + σh)2
uθ = 0 on r = 1 + σh(θ) .(2.3)124

For an arbitrary arrangement {x1, . . . ,xm} of the centers of the traps, and for125

σ → 0 and ε→ 0, we will derive a reduced problem consisting of two linear algebraic126

systems that provide an asymptotic approximation to the MFPT that has an error127

O(σ2, ε2). These linear algebraic systems involve the Neumann Green’s matrix and128

certain weighted integrals of the boundary profile h(θ).129

To analyze (2.2), we use a regular perturbation series to approximate (2.2) for130

the near-disk domain to problems involving a unit disk. We expand the MFPT u as131

u = u0 + σu1 + . . . ,(2.4)132

and substitute it into (2.2) and (2.3). This yields the leading-order problem133

D∆u0 = −1 , x ∈ Ω̄ ; Ω̄ ≡ Ω \ ∪m
j=1Ωεj ,

∂nu0 = 0 , on r = 1 ; u0 = 0 , x ∈ ∂Ωεj , j = 1, . . . ,m ,
(2.5)134
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together with the following problem for the next order correction u1:135

∆u1 = 0 , x ∈ Ω̄ ; ∂ru1 = −hu0rr + hθu0θ , on r = 1 ;

u1 = 0 , x ∈ ∂Ωεj , j = 1, . . . ,m .
(2.6)136

Observe that (2.5) and (2.6) are formulated on the unit disk and not on the perturbed137

disk. Assuming ε2 ≪ σ, we use (2.4) and |Ωσ| = |Ω|+O(σ2) to derive an expansion138

for the average MFPT, defined by u ≡ 1
|Ω̄σ|

∫

Ω̄σ
u dx, in the form139

u =
1

|Ω|

∫

Ω

u0 dx+ σ

[

1

|Ω|

∫

Ω

u1 dx+
1

|Ω|

∫ 2π

0

h(θ)u0|r=1 dθ

]

+O(σ2, ε2) ,(2.7)140

where |Ω| = π and u0|r=1 is the leading-order solution u0 evaluated on r = 1.141

Since the asymptotic calculation of the leading-order solution u0 by the method142

of matched asymptotic expansions in the limit ε → 0 of small trap radius was done143

previously in [4] (see also [15] and [26]), we only briefly summarize the analysis here.144

In the inner region near the j-th trap, we define the inner variables y = ε−1(x− xj)145

and u0(x) = vj(εy + xj) with ρ = |y|, for j = 1, . . . ,m. Upon writing (2.5) in terms146

of these inner variables, we have for ε→ 0 and for each j = 1, . . . ,m that147

∆ρ vj = 0 , ρ > 1 ; vj = 0 , on ρ = 1 ,(2.8)148

where ∆ρ ≡ ∂ρρ + ρ−1∂ρ. This admits the radially symmetric solution vj = Aj log ρ,149

where Aj is an unknown constant. From an asymptotic matching of the inner and150

outer solutions we obtain the required singularity condition for the outer solution u0151

as x → xj for j = 1, . . . ,m. In this way, we obtain that u0 satisfies152

∆u0 = −1/D , x ∈ Ω \ {x1, . . . ,xm} ; ∂ru0 = 0 , x ∈ ∂Ω ;(2.9a)153

u0 ∼ Aj log |x− xj |+Aj/ν as x → xj , j = 1, . . . ,m ,(2.9b)154155

where ν ≡ −1/ log ε. In terms of the Delta distribution, (2.9) implies that156

(2.10) ∆u0 = − 1

D
+ 2π

m
∑

j=1

Ajδ(x− xj) , x ∈ Ω ; ∂ru0 = 0 , x ∈ ∂Ω .157

By applying the divergence theorem to (2.10) over the unit disk we obtain that158
∑m

j=1Aj = |Ω|/(2πD). The solution to (2.10) is represented as159

u0 = −2π

m
∑

k=1

AkG(x;xk) + u0 ; u0 =
1

|Ω|

∫

Ω

u0 dx ,(2.11)160

161

where G(x;xj) is the Neumann Green’s function for the unit disk, which satisfies162

∆G =
1

|Ω| − δ(x− xj) , x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω ;

∫

Ω

Gdx = 0 ,(2.12a)163

G ∼ − 1

2π
log |x− xj |+Rj +∇xRj · (x− xj) as x → xj .(2.12b)164

165

Here, Rj ≡ R(xj) is the regular part of the Green’s function at x = xj . Expanding166

(2.11) as x → xj , and using the singularity behaviour of G(x;xj) given in (2.12b),167

together with the far-field behavior (2.9b) for u0, we obtain the matching conditon:168

(2.13) − 2πAj Rj − 2π

m
∑

i6=j

AiG(xj ;xi) + u0 ∼ Aj/ν , for j = 1, . . . ,m .169
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This yields a linear algebraic system for u0 and A ≡ (A1, . . . , Am)T , given by170

(I + 2πν G)A = ν u0 e , eTA =
|Ω|
2πD

.(2.14)171
172

Here, e ≡ (1, . . . , 1)T , ν = −1/ log ε, I is the m × m identity matrix, and G is the173

symmetric Green’s matrix with matrix entries given by174

(G)jj = Rj for i = j and (G)ij = (G)ji = G(xi;xj) for i 6= j .(2.15)175176

We left-multiply the equation for A in (2.14) by eT , which isolates u0. By using this177

expression in (2.14), and defining the matrix E by E = eeT /m, we get178

(2.16)
[

I + 2πν(I − E)G
]

A =
|Ω|

2πDm
e , and u0 =

|Ω|
2πDνm

+
2π

m
eTGA .179

Remark 2.1. The result (2.16) effectively sums all the logarithmic terms in powers180

of ν = −1/ log ε. To estimate the error with this approximation with regards to the181

leading-order in σ problem (2.5), we calculate using (2.11) the refined local behavior182

(2.17) u0 ∼ −2π



Aj Rj +

m
∑

i6=j

AiG(xj ;xi)



+ u0 + fj · (x− xj) , as x → xj ,183

where fj ≡ −2π
(

Aj∇xRj +
∑m

i6=j Ai ∇xG(x;xi)|x=xj

)

. To account for this gradient184

term, near the j-th trap we must modify the inner expansion as vj ∼ Aj log ρ+ εvj1.185

Here ∆yvj1 = 0 in |y| ≥ 1, with vj1 = 0 on |y| = 1 and vj1 ∼ fj · y as |y| → ∞. The186

solution is vj1 = fj ·
(

y − y/|y|2
)

. The far field behavior for vj1 implies that in the187

outer region we must have that u ∼ u0+ε
2w0+· · · , where w0 ∼ −fj ·(x− xj)/|x− xj |2188

as x → xj. This shows that the ε-error estimate for u0 is O(ε2), as claimed in (2.7).189

Next, we study the O(σ) problem for u1 given in (2.6). We construct an inner190

region near each of the traps by introducing the inner variables y = ε−1(x − xj)191

and u1(x) = Vj(εy + xj) with ρ = |y|. From (2.6), this yields the same leading-192

order inner problem (2.8) with vj replaced by Vj . The radially symmetric solution is193

Vj = Bj log ρ, where Bj is a constant to be found. By matching this far-field behavior194

of the inner solution to the outer solution we obtain the singularity behavior for u1195

as x → xj for j = 1, . . . ,m. In this way, we find from (2.6) that u1 satisfies196

∆u1 = 0 , x ∈ Ω \ {x1, . . . ,xm} ; ∂ru1 = F (θ) , on r = 1;(2.18a)197

u1 ∼ Bj log |x− xj |+Bj/ν as x → xj j = 1, . . . ,m ,(2.18b)198199

where ν = −1/ log ε and F (θ) is defined by200

(2.18c) F (θ) ≡ −hu0rr|r=1 + hθu0θ|r=1 = (hu0θ)θ +
h

D
.201

In deriving (2.18c) we used u0rr = −u0θθ + 1/D at r = 1, as obtained from (2.5).202

Next, we introduce the Dirac distribution and write the problem (2.18) for u1 as203

∆u1 = 2π
m
∑

i=1

Bi δ(x− xi) , x ∈ Ω ; u1r = F (θ) , on r = 1 .(2.19)204

205
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Since
∫ 2π

0
F (θ) dθ = 0, the divergence theorem yields

∑m
j=1Bj = 0. We decompose206

(2.20) u1 = −2π

m
∑

i=1

BiG(x;xi) + u1p + u1 ,207

where u1 is the unknown average of u1 over the unit disk, and G(x;xi) is the Neumann208

Green’s function satisfying (2.12). Here, u1p is taken to be the unique solution to209

∆u1p = 0, x ∈ Ω; ∂ru1p = F (θ) on r = 1;

∫

Ω

u1p dx = 0 .(2.21)210
211

Next, by expanding (2.20) as x → xj , we use the singularity behaviour of G(x;xj)212

as given in (2.12b) to obtain the local behavior of u1 as x → xj , for each j = 1, . . . ,m.213

The asymptotic matching condition is that this behavior must agree with that given214

in (2.18b). In this way, we obtain a linear algebraic system for the constant u1 and215

the vector B = (B1, . . . , Bm)T , which is given in matrix form by216

(2.22) (I + 2πνG)B = νu1e+ νu1p , eTB = 0 .217

Here, I is the identity, e = (1, . . . , 1)T , and u1p = (u1p(x1), . . . , u1p(xm))T . Next,218

we left multiply the equation for B by eT . This determines u1, which is then re-219

substituted into (2.22) to obtain the uncoupled problem220

(2.23)
[

I + 2πν(I − E)G
]

B = ν(I − E)u1p , and u1 = − 1

m
eTu1p +

2π

m
eTGB ,221

where E ≡ eeT /m. Since eT (I − E) = 0, we observe from (2.23) that eTB = 0, as222

required. Equation (2.23) gives a linear system for the O(σ) average MFPT u1 in223

terms of the Neumann Green’s matrix G, and the vector u1p.224

To determine u1p(xj), we use Green’s second identity on (2.21) and (2.12) to225

obtain a line integral over the boundary x ∈ ∂Ω of the unit disk. Then, by using226

(2.18c) for F (θ), integrating by parts and using 2π periodicity we get227

(2.24)

u1p(xj) =

∫ 2π

0

G(x;xj)F (θ) dθ =

∫ 2π

0

G(x;xj)
h(θ)

D
dθ −

∫ 2π

0

h(θ)u0θ∂θG(x;xj) dθ .228

Then, by setting (2.11) for u0 into (2.24), we obtain in terms of the Ak of (2.16) that229

(2.25a) u1p(xj) =
1

D

∫ 2π

0

G(x;xj)h(θ) dθ + 2π

m
∑

k=1

AkJjk .230

Here, Jjk is defined by the following boundary integral with x = (cos(θ), sin(θ))T :231

(2.25b) Jjk ≡
∫ 2π

0

h(θ) (∂θG(x;xj)) (∂θG(x;xk)) dθ .232

¿From a numerical evaluation of the boundary integrals in (2.25), we can calculate233

u1p = (u1p(x1), . . . , u1p(xm))T , which specifies the right-hand side of the linear system234

(2.23) for B. After determining B, we obtain u1 from the second relation in (2.23).235

Finally, by substituting (2.11) for u0 into (2.7), and recalling that
∫ 2π

0
h(θ) dθ = 0, we236

obtain a two-term expansion for the average MFPT given by237

(2.26) u ∼ u0 + σ

(

u1 − 2

m
∑

k=1

Ak

∫ 2π

0

G(x;xk)h(θ) dθ

)

.238

Here, x ∈ ∂Ω and u0 is determined from (2.16).239
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3. Optimizing Trap Configurations for the MFPT in the Near-Disk.240

To numerically evaluate the boundary integrals in (2.25) and (2.26), we need explicit241

formulae for G(x;xj) and ∂θG(x;xj) on the boundary of the unit disk where x =242

(cos θ, sin θ)T . For the unit disk, we obtain from equation (4.3) of [12] that243

G(x;xj) = − 1

2π
log |x− xj | −

1

4π
log
(

|x|2|xj |2 + 1− 2x · xj

)

+
(|x|2 + |xj |2)

4π
− 3

8π
,

(3.1a)

244

R(xj ;xj) = − 1

2π
log
(

1− |xj |2
)

+
|xj |2
2π

− 3

8π
.(3.1b)245

246

For an arbitrary configuration {x1, . . . ,xm} of traps, these expressions can be used247

to evaluate the Neumann Green’s matrix G of (2.15) as needed in (2.16) and (2.23).248

Next, by setting x = (cos θ, sin θ)T we can evaluate G(x;xj) on ∂Ω, and then249

calculate its tangential boundary derivative ∂θG(x;xj). By using (3.1a), we obtain250

G(x;xj) = − 1

2π
log
(

1 + r2j − 2rj cos(θ − θj)
)

+
1

4π
(1 + r2j )−

3

8π
,(3.2a)251

∂θG(x;xj) = −rj
π

sin(θ − θj)
[

r2j + 1− 2rj cos(θ − θj)
] ,(3.2b)252

253

where rj ≡ |xj | and xj = rj(cos θj , sin θj)
T . Then, since

∫ 2π

0
h(θ) dθ = 0, we can254

write the two boundary integrals appearing in (2.25) and (2.26) explicitly as255

∫ 2π

0

G(x;xj)h(θ) dθ = − 1

2π

∫ 2π

0

h(θ) log
(

1 + r2j − 2rj cos(θ − θj)
)

dθ ,(3.3a)256

Jjk =
rjrk
π2

∫ 2π

0

h(θ) sin(θ − θj) sin(θ − θk)
[

r2j + 1− 2rj cos(θ − θj)
]

[r2k + 1− 2rk cos(θ − θk)]
dθ .(3.3b)257

258

Although for an arbitrary h(θ) the integrals in (3.3) cannot be evaluated in closed259

form, they can be computed to a high degree of accuracy with relatively few grid points260

using the trapezoidal rule since this quadrature rule is exponentially convergent for261

C∞ smooth periodic functions [25]. When |xj | < 1, the logarithmic singularities off262

of the axis of integration for Jjk in (3.3) are mild and pose no particular problem. In263

this way, we can numerically calculate the two-term expansion (2.26) for the average264

MFPT with high precision.265

Then, to determine the optimal trap configuration we can either use the particle266

swarming approach [11], or the ODE relaxation dynamics scheme267

(3.4)
dz

dt
= −∇zu , where z ≡ (x1, y1, . . . , xm, ym)T ,268

and u is given in (2.26). Starting from an admissible initial state z|t=0, where xj =269

(xj , yj) ∈ Ω0 at t = 0 for j = 1, . . . ,m, the gradient flow dynamics (3.4) converges270

to a local minimum of u. Because of our high precision in calculating u, a centered271

difference scheme with mesh spacing 10−4 was used to estimate the gradient in (3.4).272

3.1. Examples of the Theory. We first set σ = 0.1 and consider the boundary273

profile h(θ) = cos(Nθ), where N is a positive integer representing the number of274

boundary folds. In [10], an explicit two-term expansion for the average MFPT u was275

derived for the special case where m traps are equidistantly spaced on a ring of radius276
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Fig. 1. Optimal trap patterns for D = 1 in a near-disk domain with boundary r = 1+σ cos(4θ),
with σ = 0.1, that contains m traps of a common radius ε = 0.05. Computed from minimizing (2.26)
using the ODE relaxation scheme (3.4). Left: m = 3, u ≈ 0.2962. Inter-trap computed distances
are 0.9588, 0.9588, and 0.9540. This result is close to the full PDE simulation results of Fig. 2.
Left middle: m = 4, u ≈ 0.1927. This is a ring pattern of traps with ring radius rc ≈ 0.6215. Right
Middle: m = 7, u ≈ 0.0925. Right: m = 7, u ≈ 0.0912. The two patterns for m = 7 give nearly the
same values for u, with the rightmost pattern giving a slightly lower value.

rc, concentric within the unperturbed disk. For such a ring pattern, in Proposition 1277

of [10] it was proved that when N/m /∈ Z
+, then u ∼ u0 + O(σ2), as the correction278

at order O(σ) vanishes identically. Therefore, in order to determine the optimal trap279

pattern when N/m /∈ Z
+ we must consider arbitrary trap configurations, and not just280

ring patterns of traps. By minimizing (2.26) using the ODE relaxation scheme (3.4),281

in the left panel of Fig. 1 we show our asymptotic prediction for the optimal trap282

configuration for N = 4 folds and m = 3 traps of a common radius ε = 0.05. The283

optimal pattern is not of ring-type. The corresponding results computed from the284

closest point method of [10], shown in Fig. 2, are very close to the asymptotic result.285

In the left-middle panel of Fig. 1, we show the optimal trap pattern computed286

from our asymptotic theory (2.26) and (3.4) for the boundary profile h(θ) = cos(4θ)287

with m = 4 traps and σ = 0.1. The optimal pattern is now a ring pattern of traps. In288

this case, as predicted by Proposition 1 of [10], the optimal pattern has traps on the289

rays through the origin that coincide with the maxima of the domain boundary. By290

applying Proposition 2 of [10], the optimal perturbed ring radius has the expansion291

rc,opt ∼ 0.5985 + 0.1985σ. When σ = 0.1, this gives rc,opt ≈ 0.6184, and compares292

well with the value rc ≈ 0.6215 calculated from (2.26) and (3.4).293

In the two rightmost panels of Fig. 1, we show for h(θ) = cos(4θ) and σ = 0.1,294

that there are two seven-trap patterns that give local minima for the average MFPT295

ū0. The minimum values of ū0 for these patterns are very similar.296

Next, we construct a boundary profile with a localized protrusion, or bulge, near297

θ = 0. To this end, we define f(θ) ≡ −1 + βe−χ sin2(θ/2). By using the Taylor298

expansion of ez, combined with a simple identity for
∫ 2π

0
sin2n(ψ) dψ, we conclude299

that
∫ 2π

0
f(θ) dθ = 0 when β is related to χ by300

(3.5)

1

β
=

1

2π

∫ 2π

0

e−χ sin2(θ/2) dθ =

∞
∑

n=0

(−1)nχn

2πn!

∫ 2π

0

sin2n
(

θ

2

)

dθ =

∞
∑

n=0

(−1)n
χn(2n)!

4n (n!)
3 .301

As χ increases, the boundary deformation becomes increasingly localized near θ = 0.302

For χ = 10, for which β = 5.4484, in Fig. 3 we show optimal trap patterns for303

m = 3 and m = 4 traps for both an outward domain bulge, where r = 1+ σf(θ), and304

an inward domain bulge, were r = 1− σf(θ), with σ = 0.05. For the three-trap case,305

by comparing the two leftmost plots in Fig. 3, we observe that an inward domain bulge306
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Fig. 2. Optimizing a three-trap pattern, with a common trap radius ε = 0.05, in a four-fold star-
shaped domain (4-star) with boundary profile h(θ) = cos(4θ) and σ = 0.1. Left panel: contour plot of
the optimal PDE solution computed with closest point method. Right panel: optimal traps locations
in the 4-star domain with computed side-lengths: AB ≈ 0.9581, BC ≈ 0.9569, and CA ≈ 0.9541.
All of the computed interior angles are π/3± δ, where |δ| ≤ 0.0015.
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Fig. 3. Optimal trap patterns for D = 1 with m traps each of radius ε = 0.05 in a near-

disk domain with boundary r = 1 ± σf(θ), where σ = 0.05 and f(θ) = −1 + βe−10 sin2(θ/2), with
β = 5.4484. Computed from minimizing (2.26) using the ODE relaxation scheme (3.4). Left: m = 3
and inward domain bulge r = 1−σf(θ). Centroid of trap pattern is at (−0.0886, 0.0) and u ≈ 0.2842.
Left Middle: m = 3 and outward bulge r = 1 + σf(θ). Centroid is at (0.1061, 0.0), and u ≈ 0.2825.
Right Middle: m = 4 and inward bulge r = 1− σf(θ), u ≈ 0.1918. Right: m = 4 and outward bulge
r = 1 + σf(θ), u ≈ 0.1916.

will displace the trap locations to the left, as expected intuitively. Alternatively, for307

an outward bulge, the location of the optimal trap on the line of symmetry becomes308

closer to the domain protrusion. An intuitive, but as we will see below in Fig. 4, näıve309

interpretation of the qualitative effect of this domain bulge is that it acts to confine310

or pin a Brownian particle in this region, and so in order to reduce the mean capture311

time of such a pinned particle, the best location for a trap is to move closer to the312

region of protrusion. For the case of four traps, a similar qualitative comparison of313

the optimal trap configuration for an inward and outward domain bulge is seen in the314

two rightmost plots in Fig. 3.315

In Fig. 4, we show optimal trap patterns from our hybrid theory for 3 ≤ m ≤ 5316

circular traps of radius ε = 0.05 in a domain with boundary profile r = 1 + σh(θ),317

where h(θ) = cos(3θ)−cos(θ)−cos(2θ) and σ = 0.075. This boundary profile perturbs318

the unit disk inwards near θ = π and outwards near θ = 0. For m = 3, in Fig. 5 we319

show a favorable comparison between the full numerical PDE results and the hybrid320

results for the optimal average MFPT and trap locations. Moreover, from the two321

rightmost plots in Fig. 4, we observe that there are two five-trap patterns that give322

local minima for ū0. The pattern that has a trap on the line of symmetry near the323
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outward bulge at θ = 0 is, in this case, not a global minimum of the average MFPT.324

This indicates that hard-to-assess global effects, rather than simply the local geometry325

near a protrusion, play a central role for characterizing the optimal trap pattern.326
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Fig. 4. Optimal trap patterns for D = 1 in a near-disk domain with boundary r = 1 + σh(θ),
σ = 0.075 and h(θ) = cos(3θ) − cos(θ) − cos(2θ), that contains m traps of a common radius ε =
0.05. Computed from minimizing (2.26) using the ODE relaxation scheme (3.4). Left: m = 3 and
u ≈ 0.2794. Left-Middle: m = 4 and u ≈ 0.19055. Right-Middle: m = 5 and u ≈ 0.1418. Right:
m = 5, u ≈ 0.1383. The two patterns for m = 5 are local minimizers, with rather close values for
u. The global minimum is achieved for the rightmost pattern.

Fig. 5. Contour plot of the PDE numerical solution for the optimal average MFPT
and trap locations computed from the closest point method corresponding to the parameter val-
ues in the left panel of Fig. 4. Full PDE results for optimal locations: (−0.3382, 0.5512),
(−0.3288,−0.5510), (0.4410, 0.0012), and u = 0.2996. Hybrid results: (−0.3316, 0.5626),
(−0.3316, 0.5626), (0.4314, 0.000), and u0 = 0.2794.

4. Optimizing Trap Configurations for the MFPT in an Ellipse. Next,327

we consider the trap optimization problem in an ellipse of arbitrary aspect ratio, but328

with fixed area π. Our analysis uses a new explicit analytical formula, as derived in329

§ 5, for the Neumann Green’s function G(x;x0) and its regular part Re of (5.1).330

For m circular traps each of radius ε, the average MFPT u0 satisfies (see (2.16))331

(4.1) u0 =
|Ω|

2πDνm
+

2π

m
eTGA , where

[

I + 2πν(I − E)G
]

A =
|Ω|

2πDm
e .332

Here E ≡ eeT /m, e = (1, . . . , 1)T , ν ≡ −1/ log ε, and the Green’s matrix G depends333

on the trap locations {x1, . . . ,xm}. To determine optimal trap configurations that are334

minimizers of the average MFPT, given in (4.1), we use the ODE relaxation scheme335

(4.2)
dz

dt
= −∇zu0 , where z ≡ (x1, y1, . . . , xm, ym) .336
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In our implementation of (4.2), the gradient was approximated using a centered dif-337

ference scheme with mesh spacing 10−4. The results shown below for the optimal trap338

patterns are confirmed from using a particle swarm approach [11].339

The derivation of the Neumann Green’s function and its regular part in § 5 is340

based on mapping the elliptical domain to a rectangular domain using341

(4.3a) x = f cosh ξ cos η , y = f sinh ξ sin η , f =
√

a2 − b2 .342

With these elliptic cylindrical coordinates, the ellipse is mapped to the rectangle343

0 ≤ ξ ≤ ξb and 0 ≤ η ≤ 2π, where a = f cosh ξb and b = f sinh ξb, so that344

(4.3b) f =
√

a2 − b2 , ξb = tanh−1

(

b

a

)

= −1

2
log β , β ≡

(

a− b

a+ b

)

.345

To determine (ξ, η), given a pair (x, y), we invert the transformation (4.3a) using346

(4.4a)

ξ =
1

2
log
(

1− 2s+ 2
√

s2 − s
)

, s ≡ −µ−
√

µ2 + 4f2y2

2f2
, µ ≡ x2 + y2 − f2 .347

To recover η, we define η⋆ ≡ sin−1(
√
p) and use348

(4.4b) η =



















η⋆, if x ≥ 0 , y ≥ 0

π − η⋆, if x < 0 , y ≥ 0

π + η⋆, if x ≤ 0 , y < 0

2π − η⋆, if x > 0 , y < 0

, where p ≡ −µ+
√

µ2 + 4f2y2

2f2
.349

As derived in § 5, the matrix entries in G are obtained from the explicit result350

G(x;x0) =
1

4|Ω|
(

|x|2 + |x0|2
)

− 3

16|Ω| (a
2 + b2)− 1

4π
log β − 1

2π
ξ>

− 1

2π

∞
∑

n=0

log





8
∏

j=1

|1− β2nzj |



 , for x 6= x0 ,

(4.5a)351

where |Ω| = πab, ξ> ≡ max(ξ, ξ0), and the complex constants z1, . . . , z8 are defined352

in terms of (ξ, η), (ξ0, η0) and ξb by353

z1 ≡ e−|ξ−ξ0|+i(η−η0) , z2 ≡ e|ξ−ξ0|−4ξb+i(η−η0) , z3 ≡ e−(ξ+ξ0)−2ξb+i(η−η0) ,

z4 ≡ eξ+ξ0−2ξb+i(η−η0) , z5 ≡ eξ+ξ0−4ξb+i(η+η0) , z6 ≡ e−(ξ+ξ0)+i(η+η0) ,

z7 ≡ e|ξ−ξ0|−2ξb+i(η+η0) , z8 ≡ e−|ξ−ξ0|−2ξb+i(η+η0) .

(4.5b)

354

Observe that the Dirac point at x0 = (x0, y0) is mapped to (ξ0, η0). The transforma-355

tion (4.3) and its inverse (4.4), determines G(x;x0) explicitly in terms of x ∈ Ω.356

Moreover, as shown in § 5, the regular part of the Neumann Green’s function, Re,357

satisfying G(x;x0) ∼ −(2π)−1 log |x− x0|+Re as x → x0, is given by358

Re =
|x0|2
2|Ω| − 3

16|Ω| (a
2 + b2) +

1

2π
log(a+ b)− ξ0

2π
+

1

4π
log
(

cosh2 ξ0 − cos2 η0
)

− 1

2π

∞
∑

n=1

log(1− β2n)− 1

2π

∞
∑

n=0

log





8
∏

j=2

|1− β2nz0j |



 .

(4.6a)

359
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Here, z0j is the limiting value of zj , defined in (4.5b), as (ξ, η) → (ξ0, η0), given by360

z02 = β2 , z03 = βe−2ξ0 , z04 = βe2ξ0 , z05 = β2e2ξ0+2iη0 ,

z06 = e−2ξ0+2iη0 , z07 = βe2iη0 , z08 = βe2iη0 , where β ≡ a− b

a+ b
.

(4.6b)361

4.1. Examples of the Theory. In this subsection, we will apply our hybrid362

analytical-numerical approach based on (4.1), (4.5), (4.6) and the ODE relaxation363

scheme (4.2), to compute optimal trap configurations in an elliptical domain of area π364

with either m = 2, . . . , 5 circular traps of a common radius ε = 0.05. In our examples365

below, we set D = 1 and we study how the optimal pattern of traps changes as366

the aspect ratio of the ellipse is varied. We will compare our results from this hybrid367

theory with the near-disk asymptotic results of (2.26), with full PDE numerical results368

computed from the closest point method [10], and with the asymptotic approximations369

derived below in § 4.2, which are valid for a long and thin ellipse.370
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Fig. 6. The optimal trap distance from the origin (left panel) and optimal average MFPT
u0min (right panel) versus the semi-minor axis b of an elliptical domain of area π that contains two
traps of a common radius ε = 0.05 and D = 1. The optimum trap locations are on the semi-major
axis, equidistant from the origin. Solid curves: hybrid asymptotic theory (4.1) for the ellipse coupled
to the ODE relaxation scheme (4.2) to find the minimum. Dashed line (red): near-disk asymptotics
of (2.26). Discrete points: full numerical PDE results computed from the closest point method.
Dashed-dotted line (blue): thin-domain asymptotics (4.14). These curves essentially overlap with
those from the hybrid theory for the optimal trap distance.

For m = 2 traps, in the right panel of Fig. 6 we show results for the optimal371

average MFPT versus the semi-minor axis b of the ellipse. The hybrid theory is372

seen to compare very favorably with full numerical PDE results for all b ≤ 1. For373

b near unity and for b small, the near-disk theory of (2.26) and (3.4), and the thin-374

domain asymptotic result in (4.14) are seen to provide, respectively, good predictions375

for the optimal MFPT. Our hybrid theory shows that the optimal trap locations376

are on the semi-major axis for all b < 1. In the left panel of Fig. 6, the optimal377

trap locations found from the steady-state of our ODE relaxation (4.2) are seen to378

compare very favorably with full PDE results. Remarkably, we observe that the thin-379

domain asymptotics prediction in (4.14) agrees well with the optimal locations from380

our hybrid theory for b < 0.7.381

Next, we consider the case m = 3. To clearly illustrate how the optimal trap382

configuration changes as the aspect ratio of the ellipse is varied, we use the hybrid383

theory to compute the area of the triangle formed by the three optimally located384

traps. The results shown in Fig. 7 are seen to compare favorably with full PDE385

results. These results show that that the optimal traps become colinear on the semi-386

major axis when a ≥ 1.45. In Fig. 8 we show snapshots, at certain values of the387
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Fig. 7. Area of the triangle formed by the three optimally located traps of a common radius
ε = 0.05 with D = 1 in a deforming ellipse of area π versus versus the semi-major axis a. The
optimal traps become collinear as a increases. Solid curve: hybrid asymptotic theory (4.1) for the
ellipse coupled to the ODE relaxation scheme (4.2) to find the minimum. Dashed line: near-disk
asymptotics of (2.26). Discrete points: full numerical PDE results computed from the closest point
method.
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Fig. 8. Optimal three-trap configurations for D = 1 in a deforming ellipse of area π with
semi-major axis a and a common trap radius ε = 0.05. Left: a = 1, b = 1. Middle Left: a = 1.184,
b ≈ 0.845. Middle Right: a = 1.351, b ≈ 0.740. Right: a = 1.450, b ≈ 0.690. The optimally located
traps form an isosceles triangle as they deform from a ring pattern in the unit disk to a collinear
pattern as a increases.
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Fig. 9. Left panel: Optimal distance from the origin for a collinear three-trap pattern on the
major-axis of an ellipse of area π versus the semi-minor axis b. When b ≤ 0.71 the optimal pattern
has a trap at the center and a pair of traps symmetrically located on either side of the origin. Right
panel: optimal average MFPT u0min versus b. Solid curves: hybrid asymptotic theory (4.1) for
the ellipse coupled to the ODE relaxation scheme (4.2) to find the minimum. Dashed line (red):
near-disk asymptotics of (2.26). Discrete points: Full PDE numerical results computed using the
closest point method. Dashed-dotted line (blue): thin-domain asymptotics (4.17).
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semi-major axis, of the optimal trap locations in the ellipse. In the right panel of388

Fig. 9, we show that the optimal average MFPT from the hybrid theory compares389

very well with full numerical PDE results for all b ≤ 1, and that the thin domain390

asymptotics (4.17) provides a good approximation when b ≤ 0.3. In the left panel of391

Fig. 9 we plot the optimal trap locations on the semi-major axis when the trap pattern392

is collinear. We observe that results for the optimal trap locations from the hybrid393

theory, the thin domain asymptotics (4.17), and the full PDE simulations, essentially394

coincide on the full range 0.2 < b < 0.7.395
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Fig. 10. Area of the quadrilateral formed by the four optimally located traps of a common radius
ε = 0.05 with D = 1 in a deforming ellipse of area π and semi-major axis a. The optimal traps
become collinear as a increases. Solid curve: hybrid asymptotic theory (4.1) for the ellipse coupled
to the ODE relaxation scheme (4.2) to find the minimum. Dashed line (red): near-disk asymptotics
of (2.26). Discrete points: full numerical PDE results computed from the closest point method.
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Fig. 11. Optimal four-trap configurations for D = 1 in a deforming ellipse of area π with
semi-major axis a and a common trap radius ε = 0.05. Left: a = 1, b = 1. Middle Left: a = 1.577,
b ≈ 0.634. Middle Right: a = 1.675, b ≈ 0.597. Right: a = 3.0, b ≈ 0.333. The optimally located
traps form a rectangle, followed by a parallelogram, as they deform from a ring pattern in the unit
disk to a collinear pattern as a increases.

For the case of four traps, where m = 4, in Fig. 10 we use the hybrid theory to396

plot the area of the quadrilateral formed by the four optimally located traps versus397

the semi-major axis a > 1. The full PDE results, also shown in Fig. 10, compare398

well with the hybrid results. This figure shows that as the aspect ratio of the ellipse399

increases the traps eventually become collinear on the semi-major axis when a ≥ 1.7.400

This feature is further illustrated by the snapshots of the optimal trap locations shown401

in Fig. 11 at representative values of a. In the right panel of Fig. 12, we show that402

the hybrid and full numerical PDE results for the optimal average MFPT agree very403

closely for all b ≤ 1, but that the thin-domain asymptotic result (4.20) agrees well only404
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when b ≤ 0.25. However, as similar to the three-trap case, on the range of b where the405

trap pattern is collinear, in the left panel of Fig. 12 we show that the hybrid theory,406

the full PDE simulations, and the thin-domain asymptotics all provide essentially407

indistinguishable predictions for the optimal trap locations on the semi-major axis.408
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Fig. 12. Left panel: Optimal distances from the origin for a collinear four-trap pattern on
the major-axis of an ellipse of area π and semi-minor axis b. When b ≤ 0.57 the optimal pattern
has two pairs of traps symmetrically located on either side of the origin. Right panel: the optimal
average MFPT u0min versus b. Solid curves: hybrid asymptotic theory (4.1) for the ellipse coupled
to the ODE relaxation scheme (4.2) to find the minimum. Dashed line (red): near-disk asymptotics
of (2.26). Discrete points: full numerical PDE results computed from the closest point method.
Dashed-dotted line (blue): thin-domain asymptotics (4.20).
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Fig. 13. Optimal five-trap configurations for D = 1 in a deforming ellipse of area π with semi-
major axis a and a common trap radius ε = 0.05. Top left: a = 1, b = 1. Top middle: a = 1.25,
b = 0.8. Top right: a = 1.4, b ≈ 0.690. Bottom left: a = 1.665, b ≈ 0.601. Bottom middle: a = 2.22,
b ≈ 0.450. Bottom right: a = 2.79, b ≈ 0.358. The optimal traps become collinear as a increases
and the edge-most traps become closer to the corner of the domain as a increases.

Finally, we show similar results for the case of five traps. In Fig. 13, we plot the409

optimal trap locations in the ellipse as the semi-major axis of the ellipse is varied.410

This plot shows that the optimal pattern becomes collinear when (roughly) a ≥ 2.411

In the right panel of Fig. 14, we show a close agreement between the hybrid and full412
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0.1
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0.3

Fig. 14. Left panel: Optimal distances from the origin for a collinear five-trap pattern on the
major-axis of an ellipse of area π and semi-minor axis b. When b ≤ 0.51 the optimal pattern has
a trap at the center and two pairs of traps symmetrically located on either side of the origin. Right
panel: The optimal average MFPT u0min versus b. Solid curves: hybrid asymptotic theory for the
ellipse (4.1) coupled to the ODE relaxation scheme (4.2) to find the minimum. Dashed line (red):
near-disk asymptotics of (2.26). Discrete points: full numerical PDE results computed from the
closest point method. Dashed-dotted line (blue): thin-domain asymptotics (4.22).

numerical PDE results for the optimal average MFPT. However, as seen in Fig. 14,413

the thin-domain asymptotic result (4.22) accurately predicts the optimal MFPT only414

for rather small b. As for the four-trap case, in the left panel of Fig. 14 we show415

that the hybrid theory, the full PDE simulations, and the thin-domain asymptotics416

all yield similar predictions for the optimal trap locations on the semi-major axis.417

4.2. Thin-Domain Asymptotics. For a long and thin ellipse, where b = δ ≪ 1418

and a = 1/δ but with |Ω| = π, we now derive simple approximations for the optimal419

trap locations and the optimal average MFPT using an approach based on thin-420

domain asymptotics. For m = 2 the optimal trap locations are on the semi-major421

axis (cf. Fig. 6), while for 3 ≤ m ≤ 5 the optimal trap locations become collinear when422

the semi-minor axis b decreases below a threshold (see Fig. 8, Fig. 11, and Fig. 13).423

As derived in Appendix A, the leading-order approximation for the MFPT u424

satisfying (2.2) in a thin elliptical with b = δ ≪ 1 is425

(4.7) u(x, y) ∼ δ−2U0(δx) +O(δ−1) ,426

where the one-dimensional profile U0(X), with x = X/δ, satisfies the ODE427

(4.8)
[

√

1−X2 U ′
0

]′
= −

√
1−X2

D
, on |X| ≤ 1 ,428

with U0 and U ′
0 bounded as X → ±1. In terms of U0(X), the average MFPT for the429

thin ellipse is estimated for δ ≪ 1 as430

(4.9) u0 ∼ 1

π

∫ 1/δ

−1/δ

∫ δ
√
1−δ2x2

−δ
√
1−δ2x2

u dxdy ∼ 4

πδ2

∫ 1

0

√

1−X2 U0(X) dX .431

In the thin domain limit, the circular traps of a common radius ε centered on432

the semi-major axis are approximated by zero point constraints for U0 at locations on433

the interval |X| ≤ 1. In this way, (4.8) becomes a multi-point BVP problem, whose434

solution depends on the locations of the zero point constraints. Optimal values for435

the location of these constraints are obtained by minimizing the 1-D integral in (4.9)436

approximating u0. We now apply this approach for m = 2, . . . , 5 collinear traps.437

This manuscript is for review purposes only.



OPTIMIZATION OF MFPT IN NEAR-DISK AND ELLIPTICAL DOMAINS 17

For m = 2 traps centered at X = ±d with 0 < d < 1, the multi-point BVP for438

U0(X) on 0 < X < 1 satisfies439

(4.10)
[

√

1−X2 U ′
0

]′
= −

√
1−X2

D
, 0 < X < 1 ; U ′

0(0) = 0 , U0(d) = 0 ,440

with U0 and U ′
0 bounded as X → ±1. A particular solution for (4.10) is U0p =441

−[(sin−1(X))2 +X2]/(4D), while the homogeneous solution is U0H = c1 sin
−1(X) +442

c2. By combining these solutions, we readily calculate that443

(4.11a) U0(X) =







− 1
4D

[

(

sin−1X
)2

+X2 − π sin−1X + c2

]

, d ≤ X ≤ 1 ,

− 1
4D

[

(

sin−1X
)2

+X2 + c1

]

, 0 ≤ X ≤ d ,
444

where c1 and c2 are given by445

(4.11b) c1 = −d2 −
(

sin−1 d
)2
, c2 = −d2 + π sin−1 d−

(

sin−1 d
)2
.446

Upon substituting (4.11a) into (4.9), we obtain that447

(4.12a) u0 ∼ − 1

πDδ2
[J0 +H(d)] ,448

where the two integrals J0 and H(d) are given by449

J0 ≡
∫ 1

0

F (X)
[

(

sin−1X
)2

+X2 − π sin−1(X)
]

dX ≈ −0.703 ,(4.12b)450

H(d) ≡ π

∫ d

0

F (X) sin−1(X) dX + c2

∫ 1

d

F (X) dX + c1

∫ d

0

F (X) dX ,(4.12c)451
452

where F (X) =
√
1−X2. By performing a few quadratures, and using (4.11b) for c1453

and c2, we obtain an explicit expression for H(d):454

(4.13) H(d) = −π
2

[

sin−1(d)
]2

+
π2

4
sin−1(d)− πd2

2
.455

To estimate the optimal average MFPT we simply maximize H(d) in (4.13)456

on 0 < d < 1. We compute that dopt ≈ 0.406, and correspondingly u0min =457

−
(

πDδ2
)−1

[J0 +H(dopt)]. Then, by setting δ = b and xopt = dopt/δ, we obtain458

the following estimate for the optimal trap location and minimum average MFPT for459

m = 2 traps in the thin domain limit:460

(4.14) x0opt ∼ 0.406/b , u0opt ∼ 0.0652/(b2D) , for b≪ 1 .461

These estimates are favorably compared in Fig. 6 with full PDE solutions computed462

using the closest point method [10] and with the full asymptotic theory based on (4.1).463

Next, suppose that m = 3. Since there is an additional trap at the origin, we464

simply replace the condition U ′
0(0) = 0 in (4.10) with U0(0) = 0. In place of (4.11a),465

(4.15a) U0(X) =







− 1
4D

[

(

sin−1X
)2

+X2 − π sin−1X + c2

]

, d ≤ X ≤ 1 ,

− 1
4D

[

(

sin−1X
)2

+X2 + c1 sin
−1X

]

, 0 ≤ X ≤ d ,
466

This manuscript is for review purposes only.



18 S. IYANIWURA, T. WONG, C. B. MACDONALD, M. J. WARD

where c1 and c2 are given by467

(4.15b)

c1 = −
(

d2 +
[

sin−1(d)
]2
)

/ sin−1(d) , c2 = −d2 + π sin−1(d)−
[

sin−1(d)
]2
.468

The average MFPT is given by (4.12a), where H(d) is now defined by469

(4.16) H(d) ≡ c2

∫ 1

d

F (X) dX + (c1 + π)

∫ d

0

F (X) sin−1(X) dX ,470

with F (X) =
√
1−X2. By maximizing H(d) on 0 < d < 1, we obtain dopt ≈ 0.567,471

so that u0min = −
(

πDδ2
)−1

[J0 +H(dopt)]. In this way, the optimal trap location472

and the minimum of the average MFPT satisfies473

(4.17) x0opt ∼ 0.567/b , u0opt ∼ 0.0308/(b2D) , for b≪ 1 .474

In Fig. 9 these scaling laws are seen to compare well with full PDE solutions and with475

the full asymptotic theory of (4.1), even when b is only moderately small.476

Next, we consider the case m = 4, with two symmetrically placed traps on either477

side of the origin. Therefore, we solve (4.10) with U ′
0(0) = 0, U0(d1) = 0, and478

U0(d2) = 0, where 0 < d1 < d2. In place of (4.11a), we get479

(4.18a) U0(X) =



















− 1
4D

[

(

sin−1X
)2

+X2 − π sin−1X + c2

]

, d2 ≤ X ≤ 1 ,

− 1
4D

[

(

sin−1X
)2

+X2 + b1 sin
−1X + b2

]

, d1 ≤ X ≤ d2 ,

− 1
4D

[

(

sin−1X
)2

+X2 + c1

]

, 0 ≤ X ≤ d1 ,

480

where c1 and c2 are given by481

c1 = −d21 −
(

sin−1 d1
)2
, c2 = −d22 + π sin−1 d2 −

(

sin−1 d2
)2
,

b1 =

(

sin−1 d1
)2 −

(

sin−1 d2
)2

+ d21 − d22

sin−1 d2 − sin−1 d1
, b2 = −b1 sin−1 d1 − d21 −

(

sin−1 d1
)2
.

(4.18b)

482

The average MFPT is given by (4.12a), where H = H(d1, d2) is now given by483

H(d1, d2) ≡ c2

∫ 1

d2

F (X) dX + (b1 + π)

∫ d2

d1

F (X) sin−1(X) dX + b2

∫ d2

d1

F (X) dX

+ π

∫ d1

0

F (X) sin−1(X) dX + c1

∫ d1

0

F (X) dX ,

(4.19)

484

where F (X) ≡
√
1−X2. By using a grid search to maximize H(d1, d2) on 0 <485

d1 < d2 < 1, we obtain that d1opt ≈ 0.215 and d2opt ≈ 0.656. This yields that the486

optimal trap locations and the minimum of the average MFPT, given by u0min =487

−
(

πDδ2
)−1

[J0 +H(d1opt, d2opt)], have the scaling law488

(4.20) x1opt ∼ 0.215/b , x2opt ∼ 0.656/b , u0opt ∼ 0.0179/(b2D) , for b≪ 1 .489

These scaling laws are shown in Fig. 12 to agree well with the full PDE solutions and490

with the full asymptotic theory of (4.1) when b is small.491
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Finally, we consider the casem = 5, where we need only modify them = 4 analysis492

by adding a trap at the origin. Setting U0(0) = 0, U0(d1) = 0, and U0(d2) = 0 we493

obtain that U0 is again given by (4.18a), except that now c1 in (4.18a) is replaced494

by c1 sin
−1(X), with c1 as defined in (4.15b). The average MFPT satisfies (4.12a),495

where in place of (4.19) we obtain that H(d1, d2) is given by496

H(d1, d2) ≡ c2

∫ 1

d1

F (X) dX + (b1 + π)

∫ d2

d1

F (X) sin−1(X) dX

+ b2

∫ d2

d1

F (X) dX + (c1 + π)

∫ d1

0

F (X) sin−1X dX ,

(4.21)497

with F (X) =
√
1−X2. A grid search yields that H(d1, d2) is maximized on 0 < d1 <498

d2 < 1 when d1opt ≈ 0.348 and d2opt ≈ 0.714. In this way, the corresponding optimal499

trap locations and minimum average MFPT have the scaling law500

(4.22) x1opt ∼ 0.348/b , x2opt ∼ 0.714/b , u0opt ∼ 0.0117/(b2D) , for b≪ 1 .501

Fig. 14 shows that (4.22) compares well with the full PDE solutions and with the full502

asymptotic theory of (4.1) when b is small.503

5. An Explicit Neumann Green’s Function for the Ellipse. We derive the504

new explicit formula (4.5) for the Neumann Green’s function and its regular part in505

(4.6) in terms of rapidly converging infinite series. This Green’s function G(x;x0) for506

the ellipse Ω ≡ {x = (x, y) |x2/a2 + y2/b2 ≤ 1} is the unique solution to507

∆G =
1

|Ω| − δ(x− x0) x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω ;(5.1a)508

G ∼ − 1

2π
log |x− x0|+Re + o(1) as x → x0 ;

∫

Ω

Gdx = 0 ,(5.1b)509
510

where |Ω| = πab is the area of Ω and Re is the regular part of the Green’s function.511

Here ∂nG is the outward normal derivative to the boundary of the ellipse. To remove512

the |Ω|−1 term in (5.1a), we introduce N(x;x0) defined by513

(5.2) G(x;x0) =
1

4|Ω| (x
2 + y2) +N(x;x0) .514

We readily derive that N(x;x0) satisfies515

∆N = −δ(x− x0) x ∈ Ω ; ∂nN = − 1

2|Ω|
√

x2/a4 + y2/b4
, x ∈ ∂Ω ;(5.3a)516

∫

Ω

N dx = − 1

4|Ω|

∫

Ω

(x2 + y2) dx = − 1

4|Ω|

( |Ω|
4

(a2 + b2)

)

= − 1

16
(a2 + b2) .(5.3b)517

518

We assume that a > b, so that the semi-major axis is on the x-axis. To solve519

(5.3) we introduce the elliptic cylindrical coordinates (ξ, η) defined by (4.3) and its520

inverse mapping (4.4). We set N (ξ, η) ≡ N(x(ξ, η), y(ξ, η)) and seek to convert (5.3)521

to a problem for N defined in a rectangular domain. It is well-known that522

(5.4) Nxx +Nyy =
1

f2(cosh2 ξ − cos2 η)
(Nξξ +Nηη) .523
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Moreover, by computing the scale factors hξ =
√

x2ξ + y2ξ and hη =
√

x2η + y2η of the524

transformation, we obtain that525

(5.5)

δ(x−x0)δ(y− y0) =
1

hηhξ
δ(ξ− ξ0)δ(η− η0) =

1

f2(cosh2 ξ − cos2 η)
δ(ξ− ξ0)δ(η− η0) ,526

where we used hξ = hη = f
√

cosh2 ξ0 − cos2 η0. By using (5.4) and (5.5), we obtain527

that the PDE in (5.3a) transforms to528

(5.6) Nξξ +Nηη = −δ(ξ − ξ0)δ(η − η0) , in 0 ≤ η ≤ 2π , 0 ≤ ξ ≤ ub .529

To determine how the normal derivative in (5.3a) transforms, we calculate530

(5.7)

(

Nx

Ny

)

=
1

xξyη − xηyξ

(

yη −yξ
−xη xξ

)(

Nξ

Nη

)

,531

where from (4.3a) we calculate532

(5.8) xξ = f sinh ξ cos η = yη , xη = −f cosh ξ sin η = −yξ .533

Now using x = a cos η and y = b sin η on ∂Ω, we calculate on ∂Ω that534

(5.9)

∂nN = ∇N · (x/a2 , y/b2)
√

x2/a4 + y2/b4
=

(

1
a cos η , 1b sin η

)

√

x2/a4 + y2/b4 (xξyη − xηyξ)

(

yη −yξ
−xη xξ

)(

Nξ

Nη

)

.535

By using (5.8), we calculate on ∂Ω that xξyη − xηyξ = b2 cos2 η+ a2 sin2 η. With this536

expression, we obtain after some algebra that (5.9) becomes537

(5.10) ∂nN =
1

ab
√

x2/a4 + y2/b4
Nu , on ξ = ξb .538

By combining (5.10) and (5.3a), we obtain Nξ = −1/(2π) on ξ = ξb.539

Next, we discuss the other boundary conditions in the transformed plane. We540

require that N and Nη are 2π periodic in η. The boundary condition imposed on541

η = 0, which corresponds to the line segment y = 0 and |x| ≤ f =
√
a2 − b2 between542

the two foci, is chosen to ensure that N and the normal derivative Ny are continuous543

across this segment. Recall from (4.4b) that the top of this segment y = 0+ and544

|x| ≤ f corresponds to 0 ≤ η ≤ π, while the bottom of this segment y = 0− and545

|x| ≤ f corresponds to π ≤ η ≤ 2π. To ensure that N is continuous across this546

segment, we require that N (ξ, η) satisfies N (0, η) = N (0, 2π − η) for any 0 ≤ η ≤ π.547

Moreover, since Nξ = Nyf sin η on ξ = 0, and sin(2π − η) = − sin(η), we must have548

Nξ(0, η) = Nξ(0, 2π − η) on 0 ≤ η ≤ π.549

Finally, we examine the normalization condition in (5.3b) by using550

(5.11)

∫

Ω

N(x, y) dx dy =

∫ ξb

0

∫ 2π

0

N (ξ, η)
∣

∣

∣det

(

xξ xη
yξ yη

)

∣

∣

∣ dξ dη .551

Since xξyη − xηyξ = f2
(

cosh2 ξ − cos2 η
)

, we obtain from (5.11) that (5.3b) becomes552

(5.12)
∫ ξb

0

∫ 2π

0

N (ξ, η)
[

cosh2 ξ − cos2 η
]

dξ dη = − 1

16f2
(a2 + b2) = − (a2 + b2)

16(a2 − b2)
.553
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In summary, from (5.6), (5.12), and the condition on ξ = ξb, N (ξ, η) satisfies554

∆N = −δ(ξ − ξ0)δ(η − η0) 0 ≤ ξ ≤ ξb , 0 ≤ η ≤ π ,(5.13a)555

∂ξN = − 1

2π
, on ξ = ξb ; N , Nη 2π periodic in η ,(5.13b)556

N (0, η) = N (0, 2π − η) , Nξ(0, η) = −Nξ(0, 2π − η) , for 0 ≤ η ≤ π ,(5.13c)557
∫ ξb

0

∫ 2π

0

N (ξ, η)
[

cosh2 ξ − cos2 η
]

dξ dη = − (a2 + b2)

16(a2 − b2)
.(5.13d)558

559

The solution to (5.13) is expanded in terms of the eigenfunctions in the η direction:560

(5.14) N (ξ, η) = A0(ξ) +

∞
∑

k=1

Ak(ξ) cos(kη) +

∞
∑

k=1

Bk(ξ) sin(kη) .561

The boundary condition (5.13b) is satisfied with A′
0(ξb) = −1/(2π) and A′

k(ξb) =562

B′
k(ξb) = 0, for k ≥ 1. To satisfy N (0, η) = N (0, 2π − η), we require Bk(0) = 0 for563

k ≥ 1. Finally, to satisfy Nξ(0, η) = −Nξ(0, 2π − η), we require that A′
0(0) = 0 and564

A′
k(0) = 0 for k ≥ 1. In the usual way, we can derive ODE boundary value problems565

for A0, Ak, and Bk. We obtain that566

(5.15a) A′′
0 = − 1

2π
δ(ξ − ξ0) , 0 ≤ ξ ≤ ξb ; A′

0(0) = 0 , A′
0(ξb) = − 1

2π
,567

while on 0 ≤ ξ ≤ ξb, and for each k = 1, 2, . . ., we have568

A′′
k − k2Ak = − 1

π
cos(kη0)δ(ξ − ξ0) ; A′

k(0) = 0 , A′
k(ξb) = 0 ,(5.15b)569

B′′
k − k2Bk = − 1

π
sin(kη0)δ(ξ − ξ0) ; Bk(0) = 0 , B′

k(ξb) = 0 .(5.15c)570
571

We observe from (5.15a) that A0 is specified only up to an arbitrary constant.572

We determine this constant from the normalization condition (5.13d). By substi-573

tuting (5.14) into (5.13d), we readily derive the identity that574

(5.16)

∫ ξb

0

A0(ξ) cosh(2ξ) dξ −
1

2

∫ ξb

0

A2(ξ) dξ = − 1

16π

(

a2 + b2

a2 − b2

)

.575

We will use (5.16) to derive a point constraint on A0(ξb). To do so, we define φ(ξ) =576

cosh(2ξ), which satisfies φ′′ − 4φ = 0 and φ′(0) = 0. We integrate by parts and use577

A′
0(0) = 0 and A′

0(ξb) = −1/(2π) to get578

4

∫ ξb

0

A0φ dξ =

∫ ξb

0

A0φ
′′ dξ = (φ′A0 − φA′

0) |ξb0 +

∫ ξb

0

φA′′
0 dξ ,

= φ′(ξb)A0(ξb) +
1

2π
[φ(ξb)− φ(ξ0)] .

(5.17)579

Next, set k = 2 in (5.15b) and integrate over 0 < ξ < ξb. Using the no-flux boundary580

conditions we get
∫ ξb
0

A2 dξ = cos(2η0)/(4π). We substitute this result, together with581

(5.17), into (5.16) and solve the resulting equation for A0(ξb) to get582

(5.18) A0(ξb) =
1

4π sinh(2ξb)

[

cosh(2ξ0) + cos(2η0)− cosh(2ξb)−
1

2

(

a2 + b2

a2 − b2

)]

.583
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To simplify this expression we use tanh ξb = b/a to calculate sinh(2ξb) = 2ab/(a2 − b2)584

and coth(2ξb) = (a2 + b2)/(2ab), while from (4.3a) we get585

x20 + y20 = f2
[

cosh2 ξ0 − sin2 η0
]

=
(a2 − b2)

2
[cosh(2ξ0) + cos(2η0)] .586

Upon substituting these results into (5.18), we conclude that587

(5.19) A0(ξb) = − 3

16|Ω| (a
2 + b2) +

1

4|Ω|
(

x20 + y20
)

,588

where |Ω| = πab is the area of the ellipse. With this explicit value for A0(ξb), the nor-589

malization condition (5.13d), or equivalently the constraint
∫

Ω
Gdx = 0, is satisfied.590

Next, we solve the ODEs (5.15) for A0, Ak, and Bk, for k ≥ 1, to obtain591

A0(ξ) =
1

2π
(ξb − ξ>) +A0(ξb) , Ak(ξ) =

cos(kη0)

kπ sinh(kξb)
cosh(kξ<) cosh (k(ξ> − ξb)) ,

(5.20a)

592

Bk(ξ) =
sin(kη0)

kπ cosh(kξb)
sinh(kξ<) cosh (k(ξ> − ξb)) ,(5.20b)593

594

where we have defined ξ> ≡ max(ξ0, ξ) and ξ< ≡ min(ξ0, ξ).595

To determine an explicit expression for G(x;x0) = |x|2/(4|Ω|)+N (ξ, η), as given596

in (5.2), we substitute (5.19) and (5.20) into the eigenfunction expansion (5.14) for597

N . In this way, we get598

(5.21a) G(x;x0) =
1

4|Ω|
(

|x|2 + |x0|2
)

− 3

16|Ω| (a
2 + b2) +

1

2π
(ξb − ξ>) + S ,599

where the infinite sum S is defined by600

S ≡
∞
∑

k=1

cos(kη0) cos(kη)

πk sinh(kξb)
cosh(kξ<) cosh (k(ξ> − ξb))

+

∞
∑

k=1

sin(kη0) sin(kη)

πk cosh(kξb)
sinh(kξ<) cosh (k(ξ> − ξb)) .

(5.21b)601

Next, from the product to sum formulas for cos(A) cos(B) and sin(A) sin(B) we get602

S =
1

2π

∞
∑

k=1

cosh (k(ξ> − ξb))

k

[

cosh(kξ<)

sinh(kξb)
+

sin(kξ<)

cosh(kξb)

]

cos (k(η − η0)

+
1

2π

∞
∑

k=1

cosh (k(ξ> − ξb))

k

[

cosh(kξ<)

sinh(kξb)
− sin(kξ<)

cosh(kξb)

]

cos (k(η + η0) .

(5.22)603

Then, by using product to sum formulas for cosh(A) cosh(B), the identity sinh(2A) =604

2 sinh(A) cosh(A), ξ> + ξ< = ξ + ξ0, and ξ> − ξ< = |ξ − ξ0|, some algebra yields that605

S =
1

2π
Re

( ∞
∑

k=1

[cosh (k(ξ + ξ0)) + cosh (k(|ξ − ξ0| − 2ξb))]

k sinh(2kξb)
eik(η−η0)

)

+
1

2π
Re

( ∞
∑

k=1

[cosh (k(ξ + ξ0 − 2ξb)) + cosh (k|ξ − ξ0|)]
k sinh(2kξb)

eik(η+η0)

)

.

(5.23)606
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The next step in the analysis is to convert the hyperbolic functions in (5.23) into607

pure exponentials. A simple calculation yields that608

(5.24a) S =
1

2π
Re

( ∞
∑

k=1

H1

k
eik(η−η0) +

∞
∑

k=1

H2

k
eik(η+η0)

)

,609

where H1 and H2 are defined by610

H1 ≡ 1

1− e−4kξb

[

ek(ξ+ξ0−2ξb) + e−k(ξ+ξ0+2ξb) + ek(|ξ−ξ0|−4ξb) + e−k|ξ−ξ0|
]

,

H2 ≡ 1

1− e−4kξb

[

ek(ξ+ξ0−4ξb) + ek(|ξ−ξ0|−2ξb) + e−k(|ξ−ξ0|+2ξb) + e−k(ξ+ξ0)
]

.

(5.24b)

611

Then, for any q with 0 < q < 1 and integer k ≥ 1, we use the identity
∑∞

n=0

(

qk
)n

=612
1

1−qk
for the choice q = e−4ξb , which converts H1 and H2 into infinite sums. This613

leads to a doubly-infinite sum representation for S in (5.24a) given by614

(5.25) S =
1

2π
Re

( ∞
∑

k=1

∞
∑

n=0

(qn)
k

k

(

zk1 + zk2 + zk3 + zk4 + zk5 + zk6 + zk7 + zk8
)

)

,615

where the complex constants z1, . . . , z8 are defined by (4.5b). From these formulae, we616

readily observe that |zj | < 1 on 0 ≤ ξ ≤ ξb for any (ξ, η) 6= (ξ0, η0). Since 0 < q < 1,617

we can then switch the order of the sums in (5.25) when (ξ, η) 6= (ξ0, η0) and use the618

identity Re
(
∑∞

k=1 k
−1ωk

)

= − log |1 − ω|, where |1 − ω| denotes modulus. In this619

way, upon setting ωj = qnzj for j = 1, . . . , 8, we obtain a compact representation for620

S. Finally, by using this result in (5.21) we obtain for (ξ, η) 6= (ξ0, η0), or equivalently621

(x, y) 6= (x0, y0), the result given explicitly in (4.5) of § 4.622

Next, to determine the regular part of the Neumann Green’s function we must623

identify the singular term in (4.5a) at (ξ, η) = (ξ0, η0). Since z1 = 1, while |zj | < 1624

for j = 2, . . . , 8, at (ξ, η) = (ξ0, η0), the singular contribution arises only from the625

n = 0 term in
∑∞

n=0 log |1 − β2nz1|. As such, we add and subtract the fundamental626

singularity −log |x− x0|/(2π) in (4.5a) to get627

(5.26a) G(x;x0) = − 1

2π
log |x− x0|+R(x;x0) ,628

629

R(x;x0) =
1

4|Ω|
(

|x|2 + |x0|2
)

− 3(a2 + b2)

16|Ω| − 1

4π
log β − 1

2π
ξ> +

1

2π
log

( |x− x0|
|1− z1|

)

− 1

2π

∞
∑

n=1

log |1− β2nz1| −
1

2π

∞
∑

n=0

log





8
∏

j=2

|1− β2nzj |



 .

(5.26b)

630

To identify limx→x0
R(x;x0) = Re, we must find limx→x0

log (|x− x0|/|1− z1|).631

To do so, we use a Taylor approximation on (4.3a) to derive at (ξ, η) = (ξ0, η0) that632

(5.27)

(

ξ − ξ0
η − η0

)

=
1

(xξyη − xηyξ)

(

yη −xη
−yξ xξ

)(

x− x0
y − y0

)

.633

By calculating the partial derivatives in (5.27) using (5.8), and then noting from (4.5b)634

that |1− z1|2 ∼ (ξ − ξ0)
2 + (η − η0)

2 as (ξ, η) → (ξ0, η0), we readily derive that635

(5.28) lim
x→x0

log

( |x− x0|
|1− z1|

)

=
1

2
log (a2 − b2) +

1

2
log
(

cosh2 ξ0 − cos2 η0
)

.636
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Finally, we substitute (5.28) into (5.26b) and let x → x0. This yields the formula637

for the regular part of the Neumann Green’s function as given in (4.6) of § 4. In638

Appendix B we show that the Neumann Green’s function (4.5) for the ellipse reduces639

to the expression given in (3.1) for the unit disk when a→ b = 1.640

6. Discussion. Here we discuss the relationship between our problem of optimal641

trap patterns and a related optimization problem for the fundamental Neumann ei-642

genvalue λ0 of the Laplacian in a bounded 2-D domain Ω containing m small circular643

absorbing traps of a common radius ε. That is, λ0 is the lowest eigenvalue of644

∆u+ λu = 0 , x ∈ Ω \ ∪m
j=1Ωεj ; ∂nu = 0 , x ∈ ∂Ω ,

u = 0 , x ∈ ∂Ωεj , j = 1, . . . ,m .
(6.1)645

Here Ωεj is a circular disk of radius ε ≪ 1 centered at xj ∈ Ω. In the limit ε →646

0, a two-term asymptotic expansion for λ0 in powers of ν ≡ −1/ log ε is (see [12,647

Corollary 2.3] and Appendix C)648

(6.2) λ0 ∼ 2πmν

|Ω| − 4π2ν2

|Ω| p(x1, . . . ,xm) +O(ν3) , with p(x1, . . . ,xm) ≡ eTGe,649

where e ≡ (1, . . . , 1)T and G is the Neumann Green’s matrix. To relate this result650

for λ0 with that for the average MFPT u0 satisfying (4.1), we let ν ≪ 1 in (4.1) and651

calculate that A ∼ |Ω|e/(2πDm) +O(ν). ¿From (4.1), we conclude that652

(6.3) u0 =
|Ω|

2πDνm

(

1 +
2πν

m
p(x1, . . . ,xm) +O(ν2)

)

,653

where p(x1, . . . , xm) is defined in (6.2). By comparing (6.3) and (6.2) we conclude,654

up to terms of O(ν2), that the trap configurations that provide local minima for the655

average MFPT also provide local maxima for the first Neumann eigenvalue for (6.1).656

Qualitatively, this implies that, up to terms of order O(ν2), the trap configuration657

that maximizes the rate at which a Brownian particle is captured also provides the658

best configuration to minimize the average mean first capture time of the particle.659

In this way, our optimal trap configurations for the average MFPT for the ellipse660

identified in § 4.1 also correspond to trap patterns that maximize λ0 up to terms of661

order O(ν2). Moreover, we remark that for the special case of a ring-pattern of traps,662

the first two-terms in (6.3) provide an exact solution of (4.1). As such, for these663

special patterns, the trap configuration that maximizes the O(ν2) term in λ0 provides664

the optimal trap locations that minimize the average MFPT to all orders in ν.665

Finally, we discuss two possible extensions of this study. Firstly, in near-disk do-666

mains and in the ellipse it would be worthwhile to use a more refined gradient descent667

procedure such as in [22] and [5] to numerically identify globally optimum trap con-668

figurations for a much larger number of identical traps than considered herein. One669

key challenge in upscaling the optimization procedure to a larger number of traps is670

that the energy landscape can be rather flat or else have many local minima, and671

so identifying the true optimum pattern is delicate. Locally optimum trap patterns672

with very similar minimum values for the average MFPT already occurs in certain673

near-disk domains at a rather small number of traps (see Fig. 1 and Fig. 4). One674

advantage of our asymptotic theory leading to (2.26) for the near-disk and (4.1) for675

the ellipse, is that it can be implemented numerically with very high precision. As676

a result, small differences in the average MFPT between two distinct locally opti-677

mal trap patterns are not due to discretization errors arising from either numerical678
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quadratures or evaluations of the Neumann Green’s function. As such, combining our679

hybrid theory with a refined global optimization procedure should lead to the reliable680

identification of globally optimal trap configurations for these domains.681

Another open direction is to investigate whether there are computationally useful682

analytical representations for the Neumann Green’s function in an arbitrary bounded683

2-D domain. In this direction, in [13, Theorem 4.1] an explicit analytical result for the684

gradient of the regular part of the Neumann Green’s function was derived in terms of685

the mapping function for a general class of mappings of the unit disk. It is worthwhile686

to study whether this analysis can be extended to provide a simple and accurate687

approach to compute the Neumann Green’s matrix for an arbitrary domain. This688

matrix could then be used in the linear algebraic system (4.1) to calculate the average689

MFPT, and a gradient descent scheme implemented to identify optimal patterns.690
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Appendix A. Derivation of the Thin Domain ODE. In the asymptotic694

limit of a long thin domain, we use a perturbation approach on the MFPT PDE (2.2)695

for u(x, y) in order to derive the limiting problem (4.8). We introduce the stretched696

variables X and Y by X = δx, Y = y/δ and d = x0/δ, and set U(X,Y ) = u(X/δ, Y δ).697

Then the PDE in (2.2) becomes δ4∂XXU + ∂Y Y U = −δ2/D. By expanding U =698

δ−2U0 + U1 + δ2U2 + . . . in this PDE, we collect powers of δ to get699

(A.1)

O(δ−2) : ∂Y Y U0 = 0 ; O(1) : ∂Y Y U1 = 0 ; O(δ2) : ∂Y Y U2 = − 1

D
− ∂XXU0 .700

On the boundary y = ±δF (δx), or equivalently Y = ±F (X), where F (X) =701 √
1−X2, the unit outward normal is n̂ = n/|n|, where n ≡ (−δ2F ′(X),±1). The702

condition for the vanishing of the outward normal derivative in (2.2) becomes703

∂nu = n̂ · (∂xu, ∂yu) =
1

|n| (−δ
2F ′,±1) · (δ∂XU, δ−1∂Y U) = 0 , on Y = ±F (X) .704

This is equivalent to the condition that ∂Y U = ±δ4F ′(X)∂XU on Y = ±F (X). Upon705

substituting U = δ−2U0 + U1 + δ2U2 + . . . into this expression, and equating powers706

of δ, we obtain on Y = ±F (X) that707

(A.2) O(δ−2) : ∂Y U0 = 0 ; O(1) ; ∂Y U1 = 0 ; O(δ2) ; ∂Y U2 = ±F ′(X)∂XU0 .708

From (A.1) and (A.2) we conclude that U0 = U0(X) and U1 = U1(X). Assuming that709

the trap radius ε is comparable to the domain width δ, we will approximate the zero710

Dirichlet boundary condition on the three traps as zero point constraints for U0.711

The ODE for U0(X) is derived from a solvability condition on the O(δ2) problem:712

(A.3)

∂Y Y U2 = − 1

D
− U ′′

0 , in Ω \ Ωa ; ∂Y U2 = ±F ′(X)U ′
0 , on Y = ±F (X) , |X| < 1 .713

We multiply this problem for U2 by U0 and integrate in Y over |Y | < F (X). Upon714
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using Lagrange’s identity and the boundary conditions in (A.3) we get715

(A.4)
∫ F (X)

−F (X)

(U0∂Y Y U2 − U2∂Y Y U0) dY = [U0∂Y U2 − U2∂Y U0]
∣

∣

∣

F (X)

−F (X)
= 2U0F

′(X)U ′
0 ,

∫ F (X)

−F (X)

U0

(

− 1

D
− U ′′

0

)

dY = −2F (X)U0

(

1

D
+ U ′′

0

)

= 2U0F
′(X)U ′

0 .

716

Thus, U0(X) satisfies the ODE [F (X)U ′
0]

′
= −F (X)/D, with F (X) =

√
1−X2, as717

given in (4.8) of § 4.2. This gives the leading-order asymptotics u ∼ δ−2U0(X).718

Appendix B. Limiting Case of the Unit Disk. We now show how to recover719

the well-known Neumann Green’s function and its regular part for the unit disk by720

letting a→ b = 1 in (4.5) and (4.6), respectively. In the limit β ≡ (a− b)/(a+ b) → 0721

only the n = 0 terms in the infinite sums in (4.5) and (4.6) are non-vanishing. In722

addition, as β → 0, we obtain from (4.3) that |x|2 ∼ f2e2ξ/4 and |x0|2 ∼ f2e2ξ0/4,723

and ξb = − log f + log(a+ b) → − log f + log 2, where f ≡
√
a2 − b2. This yields that724

(B.1) ξ + ξ0 − 2ξb ∼ log

(

2|x|
f

)

+ log

(

2|x0|
f

)

− 2 log 2 + 2 log f = log (|x||x0|) .725

As such, only the z1 and z4 terms in the infinite sums in (4.5a) with n = 0 persist as726

a→ b = 1, and so (4.5a) reduces in this limit to727

(B.2)

G(x;x0) ∼
1

4|Ω|
(

|x|2 + |x0|2
)

− 3

8|Ω| +
1

2π
(ξb − ξ>)−

1

2π
log |1−z1|−

1

2π
log |1−z4| ,728

where |Ω| = π and ξ> ≡ max(ξ0, ξ). Since η → θ and η0 → θ0, where θ and θ0 are the729

polar angles for x and x0, we get from (4.5b) that z4 → |x||x0|ei(θ−θ0) as a→ b = 1.730

We then calculate that731

(B.3)

− 1

2π
log |1− z4| = − 1

4π
log |1− z4|2 = − 1

4π
log
(

1− 2|x||x0| cos(θ − θ0) + |x|2|x0|2
)

.732

Next, with regards to the z1 term we calculate for a→ b = 1 that733

(B.4) |ξ − ξ0| =







ξ − ξ0 ∼ log
(

|x|
|x0|

)

, if 0 < |x0| < |x| ,
−(ξ − ξ0) ∼ log

(

|x0|
|x|

)

, if 0 < |x| < |x0| .
734

From (4.5b) this yields for a→ b = 1 that735

(B.5) z1 = e−|ξ−ξ0|+i(η−η0) ∼
{ |x0|

|x| e
i(θ−θ0) , if 0 < |x0| < |x| ,

|x|
|x0|e

i(θ−θ0) , if 0 < |x| < |x0| .
736

By using (B.5), we calculate for a→ b = 1 that737

(B.6) − 1

4π
log |1− z1|2 = − 1

2π
log |x− x0|+

{

1
4π log |x|2 , if 0 < |x0| < |x| ,
1
4π log |x0|2 , if 0 < |x| < |x0| .

738

Next, we estimate the remaining term in (B.2) as a→ b = 1 using739

(B.7)
1

2π
(ξb − ξ>) =

1

2π

{

ξb − ξ ∼ − 1
2π log |x| , if |x| > |x0| > 0 ,

ξb − ξ0 ∼ − 1
2π log |x0| , if 0 < |x| < |x0| .

740
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Finally, by using (B.3), (B.6), and (B.7) into (B.2), we obtain for a→ b = 1 that741

G(x;x0) ∼ − 1

2π
log |x− x0| −

1

4π
log
(

1− 2|x||x0| cos(θ − θ0) + |x|2|x0|2
)

+
1

4|Ω|
(

|x|2 + |x0|2
)

− 3

8|Ω| ,
(B.8)742

where |Ω| = π. This result agrees with that in (3.1a) for the Neumann Green’s743

function in the unit disk. Similarly, we can show that the regular part Re for the744

ellipse given in (4.6) tends as a→ b = 1 to that given in (3.1b) for the unit disk.745

Appendix C. Asymptotics of the Fundamental Neumann Eigenvalue.746

For ν ≪ 1, it was shown in [12], by using a matched asymptotic expansion analysis747

in the limit of small trap radii similar to that leading to (4.1), that the fundamental748

Neumann eigenvalue λ0 for (6.1) is the smallest positive root of749

(C.1) K(λ) ≡ det (I + 2πνGH) = 0 .750

Here ν = −1/ log ε and GH is the Helmholtz Green’s matrix with matrix entries751

(G)Hjj = RHj for i = j and (G)Hij = (G)Hji = GH(xi;xj) for i 6= j ,(C.2)752753

where the Helmholtz Green’s function GH(x;xj) and its regular part RHj satisfy754

∆GH + λGH = −δ(x− xj) , x ∈ Ω ; ∂nGH = 0 , x ∈ ∂Ω ;(C.3a)755

GH ∼ − 1

2π
log |x− xj |+RHj + o(1) , as x → xj .(C.3b)756

757

For 0 < λ≪ 1, we estimate GH by expanding GH = A/λ+G+O(λ), for some A to758

be found. From (C.3), we derive in terms of the Neumann Green’s matrix G that759

(C.4) GH = − m

λ|Ω|E + G +O(λ) , with E ≡ 1

m
eeT ,760

for 0 < λ≪ 1. From (C.4) and (C.1), the fundamental Neumann eigenvalue λ0 is the761

smallest λ > 0 for which there is a nontrivial solution c 6= 0 to762

(C.5)

(

I − 2πνm

λ|Ω| E + 2πνG +O(ν)

)

c = 0 .763

Since this occurs when λ = O(ν), we define λc > 0 by λ = 2πνmλc/|Ω|, so that (C.5)764

can be written in equivalent form as765

(C.6) Ec = λc
(

I + 2πνG +O(ν2)
)

c , where λ =
2πνm

|Ω| λc .766

Since Ee = e, while Eq = 0 for any q ∈ R
m−1 with eTq = 0, we conclude for ν ≪767

1 that the only non-zero eigenvalue of (C.6) satisfies λc ∼ 1 with c ∼ e. To determine768

the correction to this leading-order result, in (C.6) we expand λc = 1 + νλc1 + · · ·769

and c = e+ νc1 + · · · . From collecting O(ν) terms in (C.6), we get770

(C.7) (I − E) c1 = −2πGe− λc1e .771

Since I −E is symmetric with the 1-D nullspace e, the solvability condition for (C.7)772

is that −2πeTGe− λc1e
T e = 0. Since eTe = m, this yields the two-term expansion773

(C.8) λc = 1 + νλc1 + . . . , where λc1 = −2π

m
eTGe .774

Finally, using λ = 2πνmλc/|Ω|, we obtain the two-term expansion as given in (6.2).775
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