MATH 152 - Linear Systems
 Test \#2, Version A (TTh sections)

Spring, 2017
University Of British Columbia

Family Name: \qquad Given Name: \qquad
Student ID: \qquad Section: \qquad

Instructions

- You should have seven pages including this cover.
- There are 2 parts to the test:
- Part A has 10 short questions worth 1 mark each
- Part B has 3 long questions worth 5 marks each
- Although all questions in each part are worth the same, some may be more difficult than others - do the easy questions first!
- Use this booklet to answer questions.
- Return this exam with your answers.
- Please show your work. Correct intermediate steps may earn credit.
- No calculators are permitted on the test.
- No notes are permitted on the test.
- Maximum score $=\mathbf{2 5}$ Marks (attempt all questions)
- Maximum Time $=50$ minutes.

GOOD LUCK!

Part A Total	B1	B2	B3	Total
10	5	5	5	25

Part A - Short Answer Questions, 1 mark each

A1: Compute the determinant of the matrix
$\left[\begin{array}{cccc}10 & 19 & 8 & 53 \\ 0 & 1 & 19 & 2 \\ 0 & 0 & \frac{1}{5} & 4 \\ 0 & 0 & 0 & 7\end{array}\right]$

A2: Given that $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 2 & 1 & 3\end{array}\right]$, and $\mathbf{x}=\left[\begin{array}{ll}2 & 1\end{array}\right]$, calculate $(\mathbf{x} A)^{T}$.

A3: For $A=\left[\begin{array}{cc}1 & 3 \\ -2 & 4\end{array}\right]$, find A^{-1}.

A4: Which of the following are true for all 4×4 matrices A, with $\operatorname{det}(A)=$ 10? Circle all that apply.
(a) The reduced row echelon form of A is the 4×4 identity matrix.
(b) A is invertible.
(c) The homogeneous equation $A \mathbf{x}=\mathbf{0}$ has infinitely many solutions.
(d) The rank of A is 10 .
(e) $A=A^{T}$.

A5: Consider the following lines of MATLAB code:

```
A = [1 1; 1 1];
rref(A)
```

What is the result of the last line above?

Questions A6-A7 concern the resistor network below.

A6: Write the linear equation involving the unknown loop currents and current source voltage that corresponds to summing the voltage drops around loop 1 (Kirchhoff's second law).

A7: Write the linear equation that matches the loop currents to the current source.

A8: Suppose the matrix A below satisfies $A^{T}=A^{-1}$. What are all possible values of c and d ?

$$
A=\left[\begin{array}{ll}
0 & 1 \\
c & d
\end{array}\right]
$$

Questions A9-A10 below concern a game described as follows: You place a game piece on one of the three circles below. You roll a 6 -sided die to figure out where your game piece moves. If you roll 1 , you stay in your space. If you roll 2 or 3 , you move your piece clockwise. If you roll 4,5 , or 6 , you move your piece counterclockwise.

A9: Write a probability transition matrix P for the game. Use the ordering $A B C$ for the states.

A10: Suppose you start on Circle A (before you've rolled the die at all). What is the probability that after two rolls, your piece is in Circle A?

Part B - Long Answer Questions, 5 marks each

B1: Match the matrices A below with their inverse. One mark each.
(a)

$$
A=\left[\begin{array}{ccc}
-2 & -3 & -1 \\
-1 & -2 & -1 \\
1 & -1 & -1
\end{array}\right]
$$

(A) A^{-1} does not exist.
(B) $\quad A^{-1}=\left[\begin{array}{ccc}1 & -2 & 1 \\ -2 & 3 & -1 \\ 3 & -5 & 1\end{array}\right]$
(b) $\quad A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$
(C) $\quad A^{-1}=\left[\begin{array}{cc}1 / 2 & 1 / 2 \\ -1 / 2 & 1 / 2\end{array}\right]$
(c) $\quad A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 1\end{array}\right]$
(D) $A^{-1}=\left[\begin{array}{ccc}1 / 2 & -1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2 & -1 / 2 \\ -1 / 2 & 1 / 2 & 1 / 2\end{array}\right]$
(d) $\quad A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 3\end{array}\right]$
(E) $\quad A^{-1}=\left[\begin{array}{cc}4 / 3 & -1 / 2 \\ 1 / 3 & 0 \\ -2 / 3 & 1 / 2\end{array}\right]$
(e) $\quad A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$
(F) A^{-1} is not in the list above.

B2: Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation. Given that

$$
T\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right], \quad T\left(\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right], \quad T\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]
$$

(a) $\left[\begin{array}{ll}1 & \mathrm{mark}\end{array}\right]$ Write the vector $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ as a linear combination of $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ and $\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$.
(b) [3] Let B be the matrix representation of T. Find B.
(c) [1] Determine whether B is invertible using a determinant calculation.

B3: Let $T_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation that reflects a vector across the line $y=x$, and let $T_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation that rotates a vector 45° counter-clockwise.
(a) $\left[1\right.$ mark] Write a matrix R_{1} such that $T_{1}(\mathbf{x})=R_{1} \mathrm{x}$ for any $\mathrm{x} \in \mathbb{R}^{2}$.
(b) [1] Write a matrix R_{2} such that $T_{2}(\mathbf{x})=R_{2} \mathrm{x}$ for any $\mathrm{x} \in \mathbb{R}^{2}$.
(c) [1] Suppose $T_{3}=T_{1} \circ T_{2}$. That is, T_{3} is the transformation that takes an input vector in \mathbb{R}^{2}, rotates it counter-clockwise, then reflects it. Find a matrix R_{3} such that $T_{3}(\mathbf{x})=R_{3} \mathbf{x}$ for any $\mathrm{x} \in \mathbb{R}^{2}$.
(d) [2] Find a nonzero vector \mathbf{x} in \mathbb{R}^{2} such that $T_{1}(\mathbf{x})=T_{2}(\mathbf{x})$, or show with a calculation that none exists.

