MATH 152 – Linear Systems Test #2, Version A (TTh sections)

Spring, 2017 University Of British Columbia

Family Name:	 Given Name:	

 Student ID:
 Section:

Instructions

- You should have seven pages including this cover.
- There are 2 parts to the test:
 - Part A has 10 short questions worth 1 mark each
 - Part B has 3 long questions worth 5 marks each
- Although all questions in each part are worth the same, some may be more difficult than others do the easy questions first!
- Use this booklet to answer questions.
- Return this exam with your answers.
- Please show your work. Correct intermediate steps may earn credit.
- No calculators are permitted on the test.
- No notes are permitted on the test.
- Maximum score = 25 Marks (attempt all questions)
- Maximum Time = 50 minutes.

GOOD LUCK!

Part A	B1	B2	B3	Total
Total				
10	5	5	5	25

Part A - Short Answer Questions, 1 mark each

A1: Compute the determinant of the matrix

[10	19	8	53
0	1	19	2
0	0	$\frac{1}{5}$	4
0	0	Ŏ	7

A2: Given that $A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 3 \end{bmatrix}$, and $\mathbf{x} = \begin{bmatrix} 2 & 1 \end{bmatrix}$, calculate $(\mathbf{x}A)^T$.

A3: For
$$A = \begin{bmatrix} 1 & 3 \\ -2 & 4 \end{bmatrix}$$
, find A^{-1} .

- A4: Which of the following are true for all 4×4 matrices A, with det(A) = 10? Circle all that apply.
 - (a) The reduced row echelon form of A is the 4×4 identity matrix.
 - (b) A is invertible.
 - (c) The homogeneous equation $A\mathbf{x} = \mathbf{0}$ has infinitely many solutions.
 - (d) The rank of A is 10.
 - (e) $A = A^T$.

A5: Consider the following lines of MATLAB code:

A = [1 1; 1 1]; rref(A)

What is the result of the last line above?

Questions A6-A7 concern the resistor network below.

- A6: Write the linear equation involving the unknown loop currents and current source voltage that corresponds to summing the voltage drops around loop 1 (Kirchhoff's second law).
- **A7:** Write the linear equation that matches the loop currents to the current source.
- **A8:** Suppose the matrix A below satisfies $A^T = A^{-1}$. What are all possible values of c and d?

$$A = \begin{bmatrix} 0 & 1 \\ c & d \end{bmatrix}$$

Questions A9-A10 below concern a game described as follows: You place a game piece on one of the three circles below. You roll a 6-sided die to figure out where your game piece moves. If you roll 1, you stay in your space. If you roll 2 or 3, you move your piece clockwise. If you roll 4, 5, or 6, you move your piece counterclockwise.

A9: Write a probability transition matrix P for the game. Use the ordering ABC for the states.

A10: Suppose you start on Circle A (before you've rolled the die at all). What is the probability that after two rolls, your piece is in Circle A?

Part B - Long Answer Questions, 5 marks each

B1: Match the matrices A below with their inverse. One mark each.

(a)
$$A = \begin{bmatrix} -2 & -3 & -1 \\ -1 & -2 & -1 \\ 1 & -1 & -1 \end{bmatrix}$$

(b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$
(c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$
(d) $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \end{bmatrix}$
(e) $A = \begin{bmatrix} 1 & -1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}$
(A) $A^{-1} = \begin{bmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \\ 1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix}$
(B) $A^{-1} = \begin{bmatrix} 1/2 & -1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix}$
(C) $A^{-1} = \begin{bmatrix} 1/2 & -1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix}$
(F) A^{-1} is not in the list above.

B2: Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation. Given that

$$T\left(\left[\begin{array}{c}1\\1\\1\end{array}\right]\right) = \left[\begin{array}{c}1\\0\\-1\end{array}\right], \quad T\left(\left[\begin{array}{c}0\\1\\1\end{array}\right]\right) = \left[\begin{array}{c}1\\-1\\0\end{array}\right], \quad T\left(\left[\begin{array}{c}1\\0\\1\end{array}\right]\right) = \left[\begin{array}{c}1\\-1\\2\end{array}\right],$$

- (a) [1 mark] Write the vector [1 0 0] as a linear combination of [1 1 1] and [0 1 1].
- (b) [3] Let B be the matrix representation of T. Find B.
- (c) [1] Determine whether B is invertible using a determinant calculation.

- **B3:** Let $T_1 : \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that reflects a vector across the line y = x, and let $T_2 : \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that rotates a vector 45° counter-clockwise.
 - (a) [1 mark] Write a matrix R_1 such that $T_1(\mathbf{x}) = R_1 \mathbf{x}$ for any $\mathbf{x} \in \mathbb{R}^2$.
 - (b) [1] Write a matrix R_2 such that $T_2(\mathbf{x}) = R_2 \mathbf{x}$ for any $\mathbf{x} \in \mathbb{R}^2$.
 - (c) [1] Suppose $T_3 = T_1 \circ T_2$. That is, T_3 is the transformation that takes an input vector in \mathbb{R}^2 , rotates it counter-clockwise, then reflects it. Find a matrix R_3 such that $T_3(\mathbf{x}) = R_3 \mathbf{x}$ for any $\mathbf{x} \in \mathbb{R}^2$.
 - (d) [2] Find a nonzero vector \mathbf{x} in \mathbb{R}^2 such that $T_1(\mathbf{x}) = T_2(\mathbf{x})$, or show with a calculation that none exists.