Part A - Short Answer Questions, 1 mark each

A1: Compute the determinant of the matrix

$$
\operatorname{det}\left[\begin{array}{cccc}
10 & 19 & 8 & 53 \\
0 & 1 & 19 & 2 \\
0 & 0 & \frac{1}{5} & 4 \\
0 & 0 & 0 & 7
\end{array}\right]=14 .
$$

A2: Given that $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 2 & 1 & 3\end{array}\right]$, and $\mathbf{x}=[21]$, calculate $(\mathbf{x} A)^{T}$.

$$
x \mathscr{A}=\left[\begin{array}{lll}
4 & 1 & 1
\end{array}\right],(x / A)^{T}=\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right]
$$

A3: For $A=\left[\begin{array}{cc}1 & 3 \\ -2 & 4\end{array}\right]$, find A^{-1}.

$$
A^{-1}=\left[\begin{array}{cc}
\frac{4}{10} & \frac{-3}{10} \\
\frac{2}{10} & \frac{1}{10}
\end{array}\right]
$$

A4: Which of the following are true for all 4×4 matrices A, with $\operatorname{det}(A)=$ 10? Circle all that apply.
(a) The reduced row echelon form of A is the 4×4 identity matrix.
(b) A is invertible.
(c) The homogeneous equation $A \mathbf{x}=\mathbf{0}$ has infinitely many solutions.
(d) The rank of A is 10 .
(e) $A=A^{T}$.

A5: Consider the following lines of MATLAB code:

```
A = [1 1; 1 1];
rref(A)
```


What is the result of the last line above?

Questions A6-A7 concern the resistor network below.

A6: Write the linear equation involving the unknown loop currents and current source voltage that corresponds to summing the voltage drops around loop 1 (Kirchhoff's second law).

$$
7 i_{1}-4 i_{2}+E=12
$$

A7: Write the linear equation that matches the loop currents to the current source.

$$
-i_{1}+i_{2}=3
$$

A8: Suppose the matrix A below satisfies $A^{T}=A^{-1}$. What are all possible values of c and d ?

$$
\begin{gathered}
A=\left[\begin{array}{ll}
0 & 1 \\
c & d
\end{array}\right] \\
A^{T} \mathbb{A}=\mathbb{I}\left[\begin{array}{ll}
0 & c \\
1 & d
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
c & a
\end{array}\right]=\left[\begin{array}{cc}
C^{2} & C d \cdot \\
C d & H d^{2}
\end{array}\right] \\
d=0, c= \pm 1
\end{gathered}
$$

Questions A9-A10 below concern a game described as follows: You place a game piece on one of the three circles below. You roll a 6 -sided die to figure out where your game piece moves. If you roll 1 , you stay in your space. If you roll 2 or 3 , you move your piece clockwise. If you roll 4,5 , or 6 , you move your piece counterclockwise.

A9: Write a probability transition matrix P for the game. Use the ordering $A B C$ for the states.

$$
P=\left[\begin{array}{ll}
1 / 6 & 1 / 3 / 2 \\
1 / 2 / 1 / 2 \\
1 / 3 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]
$$

A10: Suppose you start on Circle A (before you've rolled the die at all). What is the probability that after two rolls, your piece is in Circle A?

$$
\begin{aligned}
& \text { protacitions } \frac{13}{36}
\end{aligned}
$$

Part B-Long Answer Questions, 5 marks each

B1: Match the matrices A below with their inverse. One mark each.
(a)

$$
A=\left[\begin{array}{ccc}
-2 & -3 & -1 \\
-1 & -2 & -1 \\
1 & -1 & -1
\end{array}\right](B)
$$

(A) A^{-1} does not exist.
(B) $A^{-1}=\left[\begin{array}{ccc}1 & -2 & 1 \\ -2 & 3 & -1 \\ 3 & -5 & 1\end{array}\right]$

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right](D)
$$

(C) $\quad A^{-1}=\left[\begin{array}{cc}1 / 2 & 1 / 2 \\ -1 / 2 & 1 / 2\end{array}\right]$
(c)

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 2 & 1
\end{array}\right](A)
$$

(D) $A^{-1}=\left[\begin{array}{ccc}1 / 2 & -1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2 & -1 / 2 \\ -1 / 2 & 1 / 2 & 1 / 2\end{array}\right]$
(d)

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 3
\end{array}\right](\hat{A})
$$

(E) $\quad A^{-1}=\left[\begin{array}{cc}4 / 3 & -1 / 2 \\ 1 / 3 & 0 \\ -2 / 3 & 1 / 2\end{array}\right]$
(e)

$$
A=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right](C)
$$

(F) A^{-1} is not in the list above.

B2: Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation. Given that

$$
T\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right], \quad T\left(\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right], \quad T\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]
$$

(a) $\left[\begin{array}{ll}1 & \mathrm{mark}\end{array}\right]$ Write the vector $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ as a linear combination of $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ and $\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$.
(b) [3] Let B be the matrix representation of T. Find B.
(c) [1] Determine whether B is invertible using a determinant calculation.

Test2 A

B2 (Solution)

(a) [1 mark] Write the vector [$\left.\begin{array}{lll}1 & 0 & 0\end{array}\right]$ as a linear combination of $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ and $\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$.

We want to find scalars α_{1} and β_{1} such that

$$
\alpha_{1}\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]+\beta_{1}\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]
$$

By inspection, we notice that $\alpha_{1}=1$ and $\beta_{1}=-1$ works.
(b) [3 marks] Let B be the matrix representation of T. Find B.

If B is the matrix representation of the transformation T, then

$$
B=\left(\begin{array}{ccc}
\vdots & \vdots & \vdots \\
T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right) & T\left(\vec{e}_{3}\right) \\
\vdots & \vdots & \vdots
\end{array}\right)
$$

where $\vec{e}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \vec{e}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, and $\vec{e}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ are the standard basis vectors in three dimension.
Now, let us find the columns of matrix B. From (a), we already have

$$
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\alpha_{1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\beta_{1}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \quad \text { where } \quad \alpha_{1}=1, \beta_{1}=-1
$$

Therefore,

$$
T\left(\vec{e}_{1}\right)=T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=T\left(\alpha_{1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\beta_{1}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)
$$

Since the transformation is linear, we have

$$
T\left(\vec{e}_{1}\right)=T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\alpha_{1} T\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right)+\beta_{1} T\left(\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)=\alpha_{1}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+\beta_{1}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]-\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right] .
$$

For the second column, we can also write \vec{e}_{2} as

$$
\vec{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\alpha_{2}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\beta_{2}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad \text { where } \quad \alpha_{2}=1, \beta_{2}=-1
$$

Therefore,

$$
T\left(\vec{e}_{2}\right)=T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=T\left(\alpha_{2}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\beta_{2}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)
$$

Since the transformation is linear, we have

$$
T\left(\vec{e}_{2}\right)=T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\alpha_{2} T\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right)+\beta_{2} T\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)=\alpha_{2}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+\beta_{2}\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]-\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right] .
$$

Similarly, for the third column, we write

$$
\vec{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\alpha_{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\beta_{3}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+\gamma_{3}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \quad \text { where } \quad \alpha_{3}=-1, \beta_{3}=1, \& \gamma_{3}=1
$$

Therefore,

$$
T\left(\vec{e}_{3}\right)=T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=T\left(\alpha_{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\beta_{3}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+\gamma_{3}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)
$$

Since the transformation is linear, we have

$$
\begin{gathered}
T\left(\vec{e}_{3}\right)=T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\alpha_{3} T\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right)+\beta_{3} T\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)+\gamma_{3} T\left(\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)=\alpha_{3}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+\beta_{3}\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]+\gamma_{3}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] \\
T\left(\vec{e}_{3}\right)=(-1) \times\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]+\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right] .
\end{gathered}
$$

Thus,

$$
B=\left(\begin{array}{ccc}
\vdots & \vdots & \vdots \\
T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right) & T\left(\vec{e}_{3}\right) \\
\vdots & \vdots & \vdots
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 1 & -2 \\
-1 & -3 & 3
\end{array}\right) .
$$

(c) [1 marks] Determine whether B is invertible using determinant calculation.

$$
\mathrm{B}=\left|\begin{array}{ccc}
0 & 0 & 1 \\
1 & 1 & -2 \\
-1 & -3 & 3
\end{array}\right|=-2
$$

Since $\operatorname{det}(B) \neq 0, B$ is invertible.

B3: Let $T_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation that reflects a vector across the line $y=x$, and let $T_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation that rotates a vector 45° counter-clockwise.
(a) $\left[1\right.$ mark] Write a matrix R_{1} such that $T_{1}(\mathbf{x})=R_{1} \mathrm{x}$ for any $\mathrm{x} \in \mathbb{R}^{2}$.
(b) [1] Write a matrix R_{2} such that $T_{2}(\mathbf{x})=R_{2} \mathrm{x}$ for any $\mathrm{x} \in \mathbb{R}^{2}$.
(c) [1] Suppose $T_{3}=T_{1} \circ T_{2}$. That is, T_{3} is the transformation that takes an input vector in \mathbb{R}^{2}, rotates it counter-clockwise, then reflects it. Find a matrix R_{3} such that $T_{3}(\mathbf{x})=R_{3} \mathbf{x}$ for any $\mathrm{x} \in \mathbb{R}^{2}$.
(d) [2] Find a nonzero vector \mathbf{x} in \mathbb{R}^{2} such that $T_{1}(\mathbf{x})=T_{2}(\mathbf{x})$, or show with a calculation that none exists.

Midterm Exam II question B3, Version A

Answers:
(a) $R_{1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(b) $R_{2}=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$
(c) $R_{2}=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right]$
(d) The coordinates of such vector would satisfy the following system of equations:

$$
x_{2}=\frac{1}{\sqrt{2}} x_{1}-\frac{1}{\sqrt{2}} x_{2},
$$

$$
x_{1}=\frac{1}{\sqrt{2}} x_{1}+\frac{1}{\sqrt{2}} x_{2} .
$$

From here, by adding the two equations together, we get the equation $x_{1}+x_{2}=$ $\sqrt{2} x_{1}$. For the set of solutions we can choose x_{1} or x_{2} as a free variable. If we set $x_{1}=s$ then $x_{2}=(\sqrt{2}-1) s$.

One possible vector is $\vec{x}=\left[\begin{array}{c}1 \\ \sqrt{2}-1\end{array}\right]$.
If we set $x_{2}=t$ then $x_{1}=(\sqrt{2}+1) t$, so $\vec{x}=\left[\begin{array}{c}\sqrt{2}+1 \\ 1\end{array}\right]$
is another possible solution.

