Math215/255 Midterm 1

Name: \qquad .Solution Student Number:

October 18, 2017

Question 1

(5 points) Solve the following initial value problems for $y(t): \quad t y^{\prime}+2 y=\cos (t), y(\pi)=0$.

$$
y^{\prime}+\frac{2}{t} y=\frac{1}{t} \cos (t)
$$

integrating factor is $\quad h(t)=e^{\int \frac{2}{t} d t}=t^{2}$

$$
\begin{gathered}
\frac{d}{d t}\left(t^{2} y\right)=t \cos (t) \\
\text { integrating, } \quad t^{2} y=t \sin (t)+\cos (t)+c_{1} \\
y(t)=\frac{1}{t} \sin (t)+\frac{1}{t^{2}} \cos (t)+\frac{c}{t^{2}} \\
y(\pi)=0 \Longrightarrow c=1 \\
y(t)=\frac{1}{t} \sin (t)+\frac{1}{t^{2}} \cos (t)+\frac{1}{t^{2}}
\end{gathered}
$$

Question 2

(10 points) Consider the following system of first order ODEs

$$
\begin{aligned}
\frac{\mathrm{d} y_{1}}{\mathrm{~d} t} & =2 y_{1}(t)-2 y_{2}(t) \\
\frac{\mathrm{d} y_{2}}{\mathrm{~d} t} & =2 y_{1}(t)+2 y_{2}(t)
\end{aligned}
$$

(a) Find the general solution of the system. Convert any complex exponentials in your solutions into " real forms" involving sines and cosines.

$$
\text { Let } \quad A=\left(\begin{array}{cc}
2 & -2 \\
2 & 2
\end{array}\right)
$$

For the eigenvalues, $\lambda^{2}-4 \lambda+8=0$ and this gives $\lambda_{1}=2+2 i$ and $\lambda_{2}=2-2 i$.
For the eigenvector $\overrightarrow{v_{1}}$,

$$
\left(\begin{array}{cc}
-2 i & -2 \\
2 & -2 i
\end{array}\right)\binom{u_{1}}{u_{2}}=\binom{0}{0} \Longrightarrow \overrightarrow{v_{1}}=\binom{i}{1}
$$

For the eigenvector $\overrightarrow{v_{2}}$,

$$
\left(\begin{array}{cc}
2 i & -2 \\
2 & 2 i
\end{array}\right)\binom{u_{1}}{u_{2}}=\binom{0}{0} \Longrightarrow \overrightarrow{v_{1}}=\binom{-i}{1}
$$

We know that the general solution of the system is given by

$$
\vec{y}(t)=\operatorname{Re}\left(\binom{i}{1} e^{(2+2 i) t}\right)+\operatorname{Im}\left(\binom{i}{1} e^{(2+2 i) t}\right)
$$

Consider

$$
\left(\binom{i}{1} e^{(2+2 i) t}\right)=e^{2 t}\binom{i}{1}(\cos (2 t)+i \sin (2 t))=e^{2 t}\binom{-\sin (2 t)}{\cos (2 t)}+i e^{2 t}\binom{\cos (2 t)}{\sin (2 t)}
$$

Therefore, the general solution is

$$
\vec{y}(t)=c_{1} e^{2 t}\binom{-\sin (2 t)}{\cos (2 t)}+c_{2} e^{2 t}\binom{\cos (2 t)}{\sin (2 t)}
$$

(b) Use the initial conditions $y_{1}(0)=1$ and $y_{2}(0)=2$ to find the constants in your solution.

$$
\binom{1}{2}=c_{1}\binom{0}{1}+c_{2}\binom{1}{0} \quad \Longrightarrow c_{1}=2, \quad c_{2}=1
$$

Therefore,

$$
\vec{y}(t)=2 e^{2 t}\binom{-\sin (2 t)}{\cos (2 t)}+e^{2 t}\binom{\cos (2 t)}{\sin (2 t)}
$$

Question 3

(7 points) Determine the value of k for which the following equation is exact

$$
\left(y \cos (x)+k x e^{y}\right) \mathrm{dx}+\left(\sin (x)+x^{2} e^{y}-1\right) \mathrm{dy}=0 .
$$

For this equation to be exact, we need $M_{y}=N_{x}$.

$$
\begin{aligned}
& M(x, y)=y \cos (x)+k x e^{y} \quad \Longrightarrow \quad M_{y}(x, y)=\cos (x)+k x e^{y} \\
& N(x, y)=\sin (x)+x^{2} e^{y}-1 \quad \Longrightarrow \quad N_{x}(x, y)=\cos (x)+2 x e^{y}
\end{aligned}
$$

Comparing M_{y} and N_{x}, we have that $k=2$.
Therefore, the equation is

$$
\left(y \cos (x)+2 x e^{y}\right) \mathrm{dx}+\left(\sin (x)+x^{2} e^{y}-1\right) \mathrm{dy}=0
$$

Let $\Phi(x, y)=C$ be the general solution of this equation. Then

$$
\begin{aligned}
& \frac{\partial \Phi}{\partial x}=M(x, y)=y \cos (x)+2 x e^{y} \quad \Longrightarrow \quad \Phi(x, y)=y \sin (x)+x^{2} e^{y}+\gamma_{1}(y) \\
& \frac{\partial \Phi}{\partial y}=N(x, y)=\sin (x)+x^{2} e^{y}-1 \quad \Longrightarrow \quad \Phi(x, y)=y \sin (x)+x^{2} e^{y}-y+\gamma_{2}(x)
\end{aligned}
$$

Comparing the two $\Phi(x, y)$ functions, we have that $\gamma_{1}(y)=y$ and $\gamma_{2}(x)=0$.
Therefore, the general solution is

$$
y \sin (x)+x^{2} e^{y}-y=C
$$

Applying the initial condition $y(\pi)=0$, we have $C=\pi^{2}$.

$$
y \sin (x)+x^{2} e^{y}-y=\pi^{2} .
$$

Question 4

(i) C
(ii) $\vec{y}(t) \longrightarrow\binom{0}{0}$ as $t \longrightarrow \infty$
(iii) B

Question 5

(12 points) Consider the following ODE

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=\lambda\left(y^{2}-4\right), \quad \text { where } \lambda>0
$$

(a) Find all the equilibria (steady state solutions) of the differential equation. For steady state solutions, we set $\frac{\mathrm{d} y}{\mathrm{~d} t}=0$ and solve for y in

$$
\lambda\left(y^{2}-4\right)=0
$$

which gives $y=-2$ and $y=2$.
(b) Sketch the graph of $\frac{\mathrm{d} y}{\mathrm{~d} t}$ vs $y(t)$ and use it to determine which of these equlibria is stable, unstable, or semi-stable.

(c)Use the initial condition $y(0)=1$ to find a solution to the equation.

Hint: You may need the partial fraction $\frac{1}{(y-a)(y-b)}=\frac{A}{(y-a)}+\frac{B}{(y-b)}$.

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} t} & =\lambda\left(y^{2}-4\right), \\
\Longrightarrow \quad \frac{d y}{(y-2)(y+2)} & =\lambda d t \\
\frac{1}{(y-2)(y+2)} & =\frac{A}{(y-2)}+\frac{B}{(y+2)} \quad \Longrightarrow \quad A=\frac{1}{4}, B=-\frac{1}{4}
\end{aligned}
$$

Therefore, we have

$$
\begin{gathered}
\int\left(\frac{1}{4} \frac{1}{(y-2)}-\frac{1}{4} \frac{1}{(y+2)}\right) d P=r t+c_{1} \\
\frac{1}{4} \ln (y-2)-\frac{1}{4} \ln (y+2)=\lambda t+c_{1} \\
\frac{(y-2)}{(y+2)}=c_{2} e^{4 \lambda t}, \quad\left(c_{2}=e^{4 \lambda t}\right) \\
y(t)=\frac{2+2 c_{2} e^{4 \lambda t}}{1-c_{2} e^{4 \lambda t}}
\end{gathered}
$$

Applying the initial condition $y(0)=-1$, we have $c_{2}=-3$.

$$
y(t)=\frac{2-6 e^{4 \lambda t}}{1+3 e^{4 \lambda t}}
$$

(d) Find the limit of this solution $y(t)$ as $t \longrightarrow \infty$.

$$
\lim _{t \longrightarrow \infty} y(t)=\frac{2-6 e^{4 \lambda t}}{1+3 e^{4 \lambda t}}=-2
$$

