Math 215/255 Midterm 2, Nov 15, 2017

Name:

SID:

Instructor:

Section:

Instructions

- The total time allowed is 50 minutes.
- The total score is 40 points.
- Use the reverse side of each page if you need extra space.
- Show all your work. A correct answer without intermediate steps will receive no credit.
- Calculators, phones and cheat sheets are not allowed.

Problem	Points	Score
1	14	
2	12	
3	14	
TOTAL	40	

1. (14 points)

a) (5 points) Find a general form of homogeneous solutions for the equation

$$\frac{d}{dt}\vec{x}(t) = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} \vec{x}(t).$$

Solution:

b) (2 points) For which initial conditions will the solution remain bounded for large t.

c) (7 points) Find a particular solution to

$$\frac{d}{dt}\vec{x}(t) = \begin{bmatrix} 1 & -1\\ 0 & 2 \end{bmatrix} \vec{x}(t) + \begin{bmatrix} 3te^{-t}\\ -3te^{-t} \end{bmatrix}.$$

- 2. (12 points) A damped spring-mass system has mass 4 kg, friction constant 2 kg/s, and spring constant $k \text{ kg/s}^2$.
 - a) (4 points) For what values of $k \ge 0$ is the spring under-damped, over-damped, and critically-damped?

Solution:

b) (5 points) For k = 2 a force is applied of $3\sin(t) \text{ kg m/s}^2$, compute a particular solution of the damped spring-mass equation.

Solution:

c) (3 points) If there was no friction, but still mass 4 kg and spring constant k = 2, give a forcing term that would exhibit resonance.

3. (14 points) The following questions concern the equation

$$\frac{d}{dt}\vec{y}(t) = \begin{bmatrix} 0 & 1\\ -12 & -8 \end{bmatrix} \vec{y}(t) + \begin{bmatrix} 0\\ f(t) \end{bmatrix}.$$

a) (4 points) Find a fundamental matrix for the homogeneous part of the equation.

b) (6 points) Given the particular solution $\vec{y}_P(t) = \begin{bmatrix} t e^{-2t} \\ e^{-2t} - 2t e^{-2t} \end{bmatrix}$, find the forcing term f(t).

c) (4 points) Solve for $\vec{y}(t)$ with the forcing of part b) and the initial conditions

$$\vec{y}(0) = \begin{bmatrix} 0\\ -3 \end{bmatrix}.$$