Math 215/255 Midterm 2, Nov 15, 2017

Name:
Instructor:

SID:
Section:

Instructions

- The total time allowed is 50 minutes.
- The total score is 40 points.
- Use the reverse side of each page if you need extra space.
- Show all your work. A correct answer without intermediate steps will receive no credit.
- Calculators, phones and cheat sheets are not allowed.

Problem	Points	Score
1	14	
2	12	
3	14	
TOTAL	40	

1. (14 points)
a) (5 points) Find a general form of homogeneous solutions for the equation

$$
\frac{d}{d t} \vec{x}(t)=\left[\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right] \vec{x}(t)
$$

Solution:

$$
\begin{aligned}
& (2-\lambda)(1-\lambda)=0 \\
& \lambda_{1}=2, \vec{v}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] . \\
& \lambda_{2}=1, \vec{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
\end{aligned}
$$

$$
\text { Solution: } \quad \vec{x}_{H}(t)=c_{1} \mathrm{e}^{2 t}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+c_{2} \mathrm{e}^{t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

b) (2 points) For which initial conditions will the solution remain bounded for large t. Solution:

Solution: \quad Only $\vec{x}(0)=\overrightarrow{0}$.
c) (7 points) Find a particular solution to

$$
\frac{d}{d t} \vec{x}(t)=\left[\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right] \vec{x}(t)+\left[\begin{array}{l}
2 t \mathrm{e}^{-t} \\
2 t \mathrm{e}^{-t}
\end{array}\right] .
$$

Solution:

$$
\begin{aligned}
& \vec{x}_{P}(t)=A t \mathrm{e}^{-t} \vec{v}_{2}+B \mathrm{e}^{-t} \vec{v}_{2} . \\
& \\
& \quad \frac{d}{d t} \vec{x}_{P}(t)-\left[\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right] \vec{x}_{P}(t)=\left[A \mathrm{e}^{-t}-A t \mathrm{e}^{-t}-B \mathrm{e}^{-t}-A t \mathrm{e}^{-t}-B \mathrm{e}^{-t}\right] \vec{v}_{2} \\
& A=-1 . A-2 B=0, B=-\frac{1}{2} .
\end{aligned}
$$

$$
\text { Solution: } \quad \vec{x}_{P}(t)=\left(-t \mathrm{e}^{-t}-\frac{1}{2} \mathrm{e}^{-t}\right)\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

2. (12 points) A damped spring with mass 2 kg has friction constant $1 \mathrm{~kg} / \mathrm{s}$ and spring constant $k \mathrm{~kg} / \mathrm{s}^{2}$.
a) (4 points) For what values of $k \geq 0$ is the spring under-damped, over-damped, and critically-damped?

$$
\begin{gathered}
2 x^{\prime \prime}(t)+x^{\prime}(t)+k x(t)=0 . \\
\lambda^{2}+\frac{1}{2} \lambda+\frac{k}{2}=0, \lambda=-\frac{1}{4} \pm \frac{1}{2} \sqrt{\frac{1}{4}-\frac{k}{2}}
\end{gathered}
$$

Solution: | $k>\frac{1}{2}$ underdamped |
| :--- |
| $k=\frac{1}{2}$ critically damped |
| $k<\frac{1}{2}$ overdamped. |

b) (5 points) For $k=1$ a force is applied of $3 \sin (2 t) \mathrm{kg} \mathrm{m} / \mathrm{s}^{2}$, Compute a particular solution of the spring equation.
$x_{P}(t)=A \sin (2 t)+B \cos (2 t)$,
$2 x_{P}^{\prime \prime}(t)+x_{P}^{\prime}(t)+x_{P}(t)=-2 A \sin (2 t)-2 B \cos (2 t)+A \cos (2 t)-B \sin (2 t)+A \sin (2 t)+B \cos (2 t)$.
$-A-B=3,-B+A=0, A=B=-\frac{3}{2}$.
Solution: $\quad x_{P}(t)=-\frac{3}{2} \sin (2 t)-\frac{3}{2} \cos (2 t)$
c) (3 points) If there was no friction, but still mass 2 kg and spring constant $k=1$, give a forcing term that would exhibit resonance.

Solution: $\quad F_{0} \cos \left(\frac{\sqrt{2}}{2} t\right)$.
3. (14 points) The following questions concern the equation

$$
\frac{d}{d t} \vec{y}(t)=\left[\begin{array}{cc}
0 & 1 \\
-12 & 8
\end{array}\right] \vec{y}(t)+\left[\begin{array}{c}
0 \\
g(t)
\end{array}\right] .
$$

a) (4 points) Find a fundamental matrix for the homogeneous part of the equation.

$$
(-\lambda)(8-\lambda)-12=\lambda^{2}-8 \lambda+12, \lambda_{1}=2, \lambda_{2}=6
$$

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

$$
\vec{v}_{2}=\left[\begin{array}{l}
1 \\
6
\end{array}\right]
$$

Solution: $\quad X(t)=\left[\begin{array}{cc}\mathrm{e}^{2 t} & \mathrm{e}^{6 t} \\ 2 \mathrm{e}^{2 t} & 6 \mathrm{e}^{6 t}\end{array}\right]$
b) (6 points) Given the particular solution $\vec{y}_{P}(t)=\left[\begin{array}{c}t \mathrm{e}^{2 t} \\ \mathrm{e}^{2 t}+2 t \mathrm{e}^{2 t}\end{array}\right]$, find the forcing term $g(t)$.
Solution:
$\frac{d}{d t} \vec{y}_{P}(t)=\left[\begin{array}{c}\mathrm{e}^{2 t}+2 t \mathrm{e}^{2 t} \\ 4 \mathrm{e}^{2 t}+4 t \mathrm{e}^{2 t}\end{array}\right]$
$\left[\begin{array}{cc}0 & 1 \\ -12 & 8\end{array}\right] \vec{y}_{P}(t)=\left[\begin{array}{c}\mathrm{e}^{2 t}+2 t \mathrm{e}^{2 t} \\ -12 t \mathrm{e}^{2 t}+8 \mathrm{e}^{2 t}+16 \mathrm{e}^{2 t}\end{array}\right]$
$g(t)=-4 t \mathrm{e}^{2 t}-8 \mathrm{e}^{2 t}+4 \mathrm{e}^{2 t}+4 t \mathrm{e}^{2 t}=-4 \mathrm{e}^{2 t}$
Solution: $\quad g(t)=-4 \mathrm{e}^{2 t}$
c) (4 points) Solve for $\vec{y}(t)$ with the forcing of part b) and the initial conditions

$$
\vec{y}(0)=\left[\begin{array}{l}
0 \\
5
\end{array}\right] .
$$

Solution:
$\vec{y}(t)=\left[\begin{array}{c}t \mathrm{e}^{2 t}-\mathrm{e}^{2 t}+\mathrm{e}^{6 t} \\ \mathrm{e}^{2 t}+2 t \mathrm{e}^{2 t}-2 \mathrm{e}^{2 t}+6 \mathrm{e}^{6 t}\end{array}\right]$
Solution: $\quad \vec{y}(t)=\left[\begin{array}{c}t \mathrm{e}^{2 t}-\mathrm{e}^{2 t}+\mathrm{e}^{6 t} \\ 2 t \mathrm{e}^{2 t}-\mathrm{e}^{2 t}+6 \mathrm{e}^{6 t}\end{array}\right]$

