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Abstract

We derive and numerically implement various asymptotic approximations for the lowest or principal eigenvalue
of the Laplacian with a periodic arrangement of localized traps of small O(ε) spatial extent that are centered at the
lattice points of an arbitrary Bravais lattice in R2. The expansion of this principal eigenvalue proceeds in powers
of ν ≡ −1/ log(εdc), where dc is the logarithmic capacitance of the trap set. An explicit three-term approximation
for this principal eigenvalue is derived using strong localized perturbation theory, with the coefficients in this
series evaluated numerically by using an explicit formula for the source-neutral periodic Green’s function and its
regular part. Moreover, a transcendental equation for an improved approximation to the principal eigenvalue, which
effectively sums all the logarithmic terms in powers of ν, is derived in terms of the regular part of the periodic
Helmholtz Green’s function. By using an Ewald summation technique to first obtain a rapidly converging infinite
series representation for this regular part, a simple Newton iteration scheme on the transcendental equation is
implemented to numerically evaluate the improved “log-summed” approximation to the principal eigenvalue. From
a numerical computation of the PDE eigenvalue problem defined on the fundamental Wigner-Seitz cell for the
lattice, it is shown that the three-term asymptotic approximation for the principal eigenvalue agrees well with the
numerical result only for a rather small trap radius. In contrast, the log-summed asymptotic result provides a very
close approximation to the principal eigenvalue even when the trap radius is only moderately small. For a circular
trap, the first few transcendental correction terms that further improves the log-summed approximation for the
principal eigenvalue are derived. Finally, it is shown numerically that, among all Bravais lattices with a fixed area
of the primitive cell, the principal eigenvalue is maximized for a regular hexagonal arrangement of traps.

Key words: eigenvalue, Bravais lattice, logarithmic capacitance, periodic Green’s function, trap cluster.

1 Introduction

For many elliptic and biharmonic problems in two spatial dimensions (2-D) with localized defects, such as perforations

or obstacles, it is often challenging to provide accurate approximate solutions in the singularly perturbed limit ε→ 0 of

a small defect size. Examples of such problems include eigenvalue problems for the Laplacian or Biharmonic operator

in 2-D domains with small holes (cf. [20], [29], [13], [16], [14]), the calculation of the maximum voltage drop on a 2-D

lattice of small circular power pads (cf. [1], [4]), the study of Faraday screening of electromagentic waves due to a wire

mesh (cf. [5]), the determination of the mean first passage time for Brownian motion in 2-D domains with small traps

(cf. [25], [22], [15], [27], [17], [3], [12]), and the analysis of Bloch waves in acoustics and electromagnetics for a 2-D

lattice of small circular Dirichlet scatterers (cf. [24]), among others.
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The primary difficulty with analyzing the effect of localized defects for many of these problems arises from the

logarithmic singularity of the 2-D free-space Green’s function. This weak singularity, as opposed to the stronger 1/r

type singularity in 3-D, typically leads to an asymptotic expansion of the solution in powers of the logarithmic gauge

ν = O(−1/ log ε). Owing to the slow convergence, unless ε is extremely small, of approximate solutions that involve

a series in powers of this logarithmic gauge, in order to obtain an approximate solution with good accuracy one must

either calculate many terms in this series or, preferably, sum the entire infinite logarithmic series.

lll1lll1

00

lll 2lll 2

lll2lll2

−lll2−lll2

2lll1+lll22lll1+lll2−2lll1+lll2−2lll1+lll2

lll1lll1−lll1−lll1

−lll1+lll2−lll1+lll2

lll1−lll2lll1−lll2−lll1−lll2−lll1−lll2

lll1+lll2lll1+lll2

2lll12lll1

2lll1−lll22lll1−lll2 3lll1−lll23lll1−lll2

Figure 1: Left figure: part of an infinite regular hexagonal lattice showing the lattice vectors. The traps are centered at the
lattice points. Right panel: Wigner Seitz (WS), or Voronoi, cells for an oblique Bravais lattice of circular traps (blue dots) of a
common radius ε. The fundamental WS (FWS) cell Ω of unit area is centered at the origin and contains the black trap. The
lattice vectors are lll1 = (1/

√
sin(θ), 0)T and lll2 = (cos(θ)/

√
sin(θ),

√
sin(θ))T with θ = π/5. The circular traps can be replaced

by a trap cluster of measure O(ε).

In this broad context, the specific goal of this paper is to derive and implement various asymptotic approximations

for the lowest or principal eigenvalue of the Laplacian with a periodic arrangement of localized traps centered at the

lattice points of an arbitrary Bravais lattice in R2. The implementation of our singular perturbation analysis will

rely heavily on explicit analytical formulae for certain Green’s functions with singularities at the lattice points. More

specifically, we consider a spatially periodic array of traps in R2 where either a single trap or a trap cluster of small

O(ε) measure is centered at the lattice points of an oblique Bravais lattice Λ defined by

Λ ≡
{
mlll1 + nlll2

∣∣∣ m, n ∈ Z
}
, (1.1)

where Z denotes the set of integers. The Wigner-Seitz (WS) cell centered at a fixed lll ∈ Λ is the set of all points in

the plane that are closer to lll than to any other lattice point. The fundamental Wigner-Seitz (FWS) cell Ω is the one

centered at the origin (see the right panel of Fig. 1 with the black trap). A WS cell is a convex polygon that has the

same area |lll1 × lll2| of the primitive cell, and the union of these WS cells tile all of R2. We will choose the lengthscale

so that the area of the primitive cell is fixed at unity. For a particular oblique lattice, in the right panel of Fig. 1 we

show the WS cells with a single circular trap (blue disk) of radius ε centered at each lattice point, and the FWS cell

Ω centered at the origin (black disk). In the left panel of Fig. 1 we show the lattice vectors for a hexagonal lattice.

In the limit ε→ 0 of small trap measure we will calculate the principal eigenvalue of the Laplacian where a common

trap cluster is centered at the lattice points of (1.1). This problem can be reduced to an eigenvalue problem on the
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FWS cell Ω of unit area, and is formulated as

4Φ + λΦ = 0 , xxx ∈ Ω\Ωε ; Φ ∈ P , xxx ∈ ∂Ω , (1.2a)

Φ = 0 , xxx ∈ ∂Ωε ;

∫
Ω\Ωε

Φ2 dxxx = 1 . (1.2b)

Here Ωε denotes a possibly multiply connected trap cluster of measure O(ε) centered at the origin 000 ∈ Ω. In (1.2a)

the operator P denotes periodic boundary conditions on ∂Ω (see (A.7) of Appendix A for a precise formulation).

The challenge in providing a good approximation for the principal eigenvalue of (1.2), even when the trap size

ε is only moderately small, is that the term-by-term asymptotic expansion of this eigenvalue proceeds in powers of

ν ≡ −1/ log(εdc), where dc is the logarithmic capacitance of the the trap set.

By exploiting the analytical result of [6] for the periodic source-neutral Green’s function and its regular part, in

Principal Result 1 of §2 a new explicit three-term expansion in powers of ν for the principal eigenvalue of (1.2) is

derived. The third term in this expansion is shown to depend on an integral of this periodic Green’s function over the

FWS cell of the lattice. From a numerical quadrature of this term, we show that the principal eigenvalue is maximized,

over the class of Bravais lattices, for a regular hexagonal lattice. In §3 we formulate a transcendental equation that

provides an improved approximation to this principal eigenvalue, and which is defined in terms of the regular part

of a periodic Helmholtz Green’s function. This “log-summed” approximation effectively sums all of the logarithmic

corrections in powers of ν in the asymptotic approximation for the principal eigenvalue of (1.2). By extending the

methodology of [2], in Principal Result 2 of §3 we derive a new computationally tractable representation for the regular

part of the Helmholtz Green’s function, which involves two rapidly converging lattice sums. In this way, in §3.1 we

provide numerical results, based on a simple Newton iteration scheme applied to the transcendental equation (3.7),

for the log-summed approximation to the principal eigenvalue of (1.2) for an arbitrary Bravais lattice. For the case

of a circular trap of radius ε, in Principal Result 3 of §4 a more refined approximation to the principal eigenvalue is

obtained, which is based on calculating the first few transcendentally small terms in its asymptotic expansion that are

smaller than any power of ν.

In §4.1, we compare our various asymptotic approximations for the principal eigenvalue with corresponding full

numerical results for (1.2) that are computed from FlexPDE [8] for both a square and a regular hexagonal lattice. These

comparisons show that, although the three-term approximation in Principal Result 1 provides a decent approximation

to the principal eigenvalue when ε is rather small, the log-summed approximation based on a Newton iteration scheme

applied to (3.7) provides a much closer approximation when ε is only moderately small. For a square lattice with a

circular trap at each lattice point, our three-term asymptotic result for the principal eigenvalue of (1.2) is shown to

agree with that derived previously in [25] using a pseudo-potential approximation combined with a numerical evaluation

of certain discrete lattice sums.

We emphasize that the transcendental equation (3.7) and its numerical implementation applies not just for a

circular trap, but also for an arbitrarily-shaped trap or for a cluster of traps, as characterized by the logarithmic

capacitance dc of the trap set. For a trap cluster consisting of a collection of non-overlapping circular disks, in §4.2

we show how to numerically compute dc to a high degree of accuracy by using a series-based approach inspired by the

methodology in [26] (see also [11]). This approach is illustrated for a two-disk cluster, where an analytical solution is

available for comparison, as well as for a three-disk cluster. Finally, a brief discussion is given in §5.

3



2 Asymptotics of the principal eigenvalue

The term-by-term asymptotic analysis for the principal eigenvalue of (1.2) as ε→ 0 relies on the periodic source-neutral

Green’s function Gp(xxx) with regular part Rp, defined uniquely by

∆Gp =
1

|Ω| − δ(xxx) , xxx ∈ Ω ; Gp ∈ P , xxx ∈ ∂Ω ;

∫
Ω

Gp dxxx = 0 , (2.1a)

Gp = − 1

2π
log |xxx|+Rp +

|xxx|2
4

+ o(|xxx|2) , as xxx→ 000 . (2.1b)

Since Ω has two lines of symmetry that intersect at the origin, the usual gradient term ∇xxxGp|xxx=000 · xxx is absent in the

local behavior (2.1b).

In [6] an explicit formula for Gp(xxx) and Rp was derived in their analysis of droplet patterns in diblock copolymer

theory. In their analysis, a point xxx is represented as a complex number z = x+ iy and the Bravais lattice was written

equivalently in terms of generators α ∈ C and β ∈ C as Λ ≡
{
mα+ nβ

∣∣∣ m, n ∈ Z
}

. By setting Im(β/α) > 0 and

Im(ᾱβ) = 1, the area of primitive cell was fixed to unity. In terms of these generators, it was derived in [6] that

Gp(z) = Im

( |z|2 − ᾱz2/α

2(αβ̄ − ᾱβ)
− z

2α
+

β

12α

)
− 1

2π
log
∣∣∣ (1− e

( z
α

))
×
∞∏
n=1

(
1− e

(
nβ + z

α

))(
1− e

(
nβ − z
α

)) ∣∣∣ , (2.2a)

where e(w) ≡ e2πiw. Here the overbar denotes complex conjugate. In terms of ζ ≡ β/α, the regular part Rp of Gp is

Rp = − 1

2π
log(2π)− 1

2π
log
∣∣∣√Im(ζ) e

(
ζ

12

) ∞∏
n=1

(1− e(nζ))
2
∣∣∣ . (2.2b)

Our three-term asymptotic result for the principal eigenvalue of (1.2), defined in terms of Gp and Rp, is as follows:

Principal Result 1 For ε→ 0, the principal eigenvalue λ0 for (1.2) for an arbitrary oblique Bravais lattice is

λ0 = νλ00 + ν2λ01 + ν3λ02 +O(ν4) , (2.3a)

where the coefficients are given in terms of Rp and Gp in (2.2) by

λ00 = 2π , λ01 = −4π2Rp , λ02 = 8π3

[
R2
p −

∫
Ω

G2
p dxxx

]
. (2.3b)

In (2.3a), ν = −1/ log(εdc), where dc is the logarithmic capacitance of the re-scaled trap cluster Ω0 ≡ ε−1Ωε, which is

defined in terms of the local coordinate yyy = ε−1xxx by the canonical inner problem

∆yyyvc = 0 , yyy /∈ Ω0 ; vc = 0 , yyy ∈ ∂Ω0 ,

vc ∼ log |yyy| − log dc +
pppc·yyy
|yyy|2 + · · · , as |yyy| → ∞ .

(2.4)

To derive (2.3) we use the framework of strong localized perturbation theory for 2-D singular perturbation problems,

as introduced in [30] and surveyed in [28]. In the outer region, defined for |xxx| � O(ε), we substitute the eigenvalue

expansion (2.3a), together with the outer expansion

Φ = Φ0 + νΦ1 + ν2Φ2 + ν3Φ3 + · · · , (2.5)
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into (1.2), and then collect powers of ν. At leading order we get ∆Φ0 = 0 in Ω with Φ0 ∈ P on ∂Ω and
∫

Ω
Φ2

0 dxxx = 1,

so that Φ0 = 1. At order O(νk) for k = 1, 2, 3, we obtain, respectively, that

∆Φ1 = −λ00Φ0 , xxx ∈ Ω\{000} ; Φ1 ∈ P , xxx ∈ ∂Ω , (2.6a)

∆Φ2 = −λ00Φ1 − λ01Φ0 , xxx ∈ Ω\{000} ; Φ2 ∈ P , xxx ∈ ∂Ω , (2.6b)

∆Φ3 = −λ00Φ2 − λ01Φ1 − λ02Φ0 , xxx ∈ Ω\{000} ; Φ3 ∈ P , xxx ∈ ∂Ω , (2.6c)

which are subject to the normalization conditions∫
Ω

Φ0Φ1 dxxx = 0 ,

∫
Ω

Φ0Φ2 dxxx = −1

2

∫
Ω

Φ2
1 dxxx ,

∫
Ω

Φ0Φ3 dxxx = −
∫

Ω

Φ1Φ2 dxxx . (2.6d)

In the inner region near the trap cluster Ωε centered at xxx = 000 we introduce the inner variables

yyy = ε−1xxx , v(yyy) ≡ Φ(εyyy) . (2.7)

We then expand the inner solution in terms of undetermined coefficients Ai for i ≥ 1, which are independent of ν, as

v(yyy) =
(
ν +A1ν

2 +A2ν
3 +A3ν

4 + · · ·
)
vc(yyy) +O(σ(ε)) , (2.8)

where σ(ε)� νk for any k > 1. Here ν ≡ −1/ log(εdc) and vc satisfies the canonical inner problem (2.4), which defines

the logarithmic capacitance dc of the trap cluster. Upon using the far-field behavior of vc in (2.8), and writing the

resulting expression in outer variables, we obtain that the outer solution must satisfy

Φ = 1 + ν (log |xxx|+A1) + ν2 (A1 log |xxx|+A2) + ν2 (A2 log |xxx|+A3) + · · ·+O(εν, σ) , as xxx→ 000 . (2.9)

Upon comparing (2.9) with (2.5) at each order in ν, we conclude that the problems in (2.6) must satisfy the following

singularity conditions as xxx→ 000:

Φ1 ∼ log |xxx|+A1 ; Φ2 ∼ A1 log |xxx|+A2 ; Φ3 ∼ A2 log |xxx|+A3 . (2.10)

From (2.6a) and (2.10), the problem for Φ1, with Φ0 ≡ 1, can be written in terms of the Dirac distribution as

∆Φ1 = −λ00 + 2πδ(xxx) , xxx ∈ Ω ; Φ1 ∈ P , xxx ∈ ∂Ω ,

A1 = lim
xxx→000

(Φ1 − log |xxx|) ;

∫
Ω

Φ1 dxxx = 0 .
(2.11)

By using the divergence theorem, together with the periodic boundary conditions and |Ω| = 1, we deduce that λ00 = 2π.

Then, by comparing (2.11) with (2.1), we identify that

Φ1 = −2πGp(xxx) , A1 = −2πRp , (2.12)

where Gp is the periodic source-neutral Green’s function with regular part Rp, as given explicitly in (2.2).

At order O(ν2), we obtain from (2.6b) and (2.10) that Φ2 satisfies

∆Φ2 = −λ00Φ1 − λ01 + 2πA1δ(xxx) , xxx ∈ Ω ; Φ2 ∈ P , xxx ∈ ∂Ω ,

A2 = lim
xxx→000

(Φ2 −A1 log |xxx|) ;

∫
Ω

Φ2 dxxx = −1

2

∫
Ω

Φ2
1dxxx .

(2.13)
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By using the divergence theorem together with the periodic boundary conditions we get that

−λ00

∫
Ω

Φ1 dxxx− λ01|Ω|+ 2πA1 = 0 .

Since |Ω| = 1 and
∫

Ω
Φ1 dxxx = 0, we conclude that

λ01 = 2πA1 , where A1 = −2πRp . (2.14)

Next, we decompose the solution to (2.13) as

Φ2 = −2πA1Gp(xxx) + 2πλ00Φ2p(xxx) = 4π2RpGp(xxx) + 4π2Φ2p(xxx) . (2.15)

Upon substituting (2.15) into (2.13), and using (2.12) for Φ1, we obtain after some algebra that Φ2p satisfies

∆Φ2p = Gp(xxx) , xxx ∈ Ω ; Φ2p ∈ P , xxx ∈ ∂Ω ;

∫
Ω

Φ2p dxxx = −1

2

∫
Ω

G2
p dxxx ,

A2 = 4π2 lim
xxx→000

Φ2p(xxx) + 4π2Rp lim
xxx→000

(
Gp(xxx) +

1

2π
log |xxx|

)
.

(2.16)

Since Φ2p is bounded as xxx→ 0, we calculate by using the local behavior for Gp in (2.1b) that

A2 = 4π2
[
R2
p + Φ2p(000)

]
. (2.17)

Next, at order O(ν3), we obtain from (2.6) and (2.10) that Φ3 satisfies

∆Φ3 = −λ00Φ2 − λ01Φ1 − λ02 + 2πA2δ(xxx) , xxx ∈ Ω ; Φ3 ∈ P , xxx ∈ ∂Ω . (2.18)

From the divergence theorem and the periodic boundary conditions, and by using |Ω| = 1 and
∫

Ω
Φ1 dxxx = 0, we

calculate λ02 as

λ02 = 2πA2 − λ00

∫
Ω

Φ2 dxxx , where

∫
Ω

Φ2p dxxx = −1

2

∫
Ω

Φ2
1 dxxx . (2.19)

Then, upon using λ00 = 2π, and Φ1 = −2πGp(xxx), we obtain

λ02 = 8π3

(
R2
p + Φ2p(000) +

1

2

∫
Ω

[Gp(xxx)]
2
dxxx

)
, (2.20)

where Φ2p(000) is to be calculated from the PDE (2.16).

Finally, we show that Φ2p(000) can be evaluated without having to solve the PDE (2.16). By using Green’s second

identity on (2.16) and (2.1), we obtain from the periodic boundary conditions that
∫

Ω
Gp∆Φ2p dxxx =

∫
Ω

Φ2p∆Gp dxxx.

Since |Ω| = 1, this yields that
∫

Ω
G2
p dxxx = −Φ2p(000) +

∫
Ω

Φ2p dxxx. By using (2.16) for
∫

Ω
Φ2p dxxx, this yields that

Φ2p(000) = − (3/2)
∫

Ω
[Gp]

2
dxxx. By substituting this expression into (2.20), we obtain the result for λ02, as given in

(2.3b). This complete the derivation of Principal Result 1.

The three-term asymptotic expansion (2.3) for the principal eigenvalue λ0 of (1.2) depends only on the periodic

source-neutral Green’s function and its regular part, as given explicitly in (2.2). The integral
∫

Ω
G2
p dxxx in the second

order coefficient λ20 can be calculated numerically from the routine intpoly in MATLAB [18]. This routine is ideally

suited for performing a quadrature over the polygonal-shaped FWS cell.
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For a Bravais lattice with unit area of the primitive cell, it was proved in Theorem 2 of [6] that Rp in (2.2b) is

minimized for a regular hexagonal lattice. As such, within this comparison group, we conclude that the leading order

eigenvalue correction λ01 in (2.3) is maximized for a hexagonal lattice.

We will illustrate (2.3) for the one-parameter family of lattices Λ with generators

lll1 = (1/
√

sin(θ), 0)T , lll2 = (cos(θ)/
√

sin(θ),
√

sin(θ))T (2.21)

For this class we have |lll1| = |lll2| and it corresponds to setting α = 1/
√

sin θ and β = αeiθ in (2.2b). This yields that

Rp = − 1

2π
ln(2π)− 1

2π
ln
∣∣∣√sin θ eπiξ/6

∞∏
n=1

(
1− e2πinξ

)2 ∣∣∣ , ξ = eiθ . (2.22)

For a hexagonal and square lattice where θ = π/3 and θ = π/2, we calculate that Rp ≈ −0.210262 and Rp ≈ −0.208578,

respectively.

In Fig. 2 we plot the numerically computed coefficients λ01 and λ02, given in (2.3b), for oblique Bravais lattices

with generators given in (2.21). As expected, λ01 is maximized for the hexagonal lattice where λ01 = π/3. As a

check on the quadrature of
∫

Ω
G2
p dxxx using intpoly in MATLAB [18], we equivalently performed the integration over

the primitive cell Ω0 ≡ {z | z = sα+ tβ , 0 < s, t < 1} in that∫
Ω

[Gp(z)]
2
dxxx =

∫
Ω0

[Gp(z)]
2
dxxx =

∫ 1

0

∫ 1

0

[Gp(sα+ tβ)]
2

Im(ᾱβ) ds dt , (2.23)

where Im(ᾱβ) = 1. The integration in (2.23) over the square 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1 was performed with a product

of Gauss-Legendre rules with 255× 255 subdivisions. Although, there are mild logarithmic singularities of Gp at each

of the four corners of this square that affect the accuracy of the quadrature, as a check on the numerical procedure we

verified that |
∫

Ω0
Gp dxxx| ≤ 10−10. In particular, for the hexagonal and square lattices we calculate that

λ0 ∼ 2πν +

{
(8.2343)ν2 + (9.8321)ν3 + · · · , (square)

(8.3008)ν2 + (10.0459)ν3 + · · · , (hexagon) .
(2.24)

20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

Figure 2: Plot of the coefficients λ01 and λ02 in the eigenvalue expansion (2.3) versus the angle θ (degrees) for an oblique Bravais
lattice with generators lll1 = (1/

√
sin(θ), 0)T and lll2 = (cos(θ)/

√
sin(θ),

√
sin(θ))T . The maximum of λ01 occurs for the hexagon

θ = π/3.

In [25] the method of pseudo-potentials combined with a separation of variables approach was used to derive a

three-term expansion for the fundamental eigenvalue on a square or triangular lattice that contains a circular trap of
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radius ε centered at the lattice points. For a square lattice of unit area of the primitive cell, [25] obtained that

λ0 = λ0t ∼ 2πν

[
1 + αsν +

(
α2
s −

βs
π2

)
ν2 + · · ·

]
, (2.25)

where αs ≈ 1.310529 and βs ≈ 1.506703 were obtained from a numerical evaluation of certain discrete lattice sums.

This result for the square lattice agrees with that in (2.24). Our three-term result (2.3) in Principal Result 1 extends

this previous result to arbitrary 2-D Bravais lattices and to allow for non-circular trap geometries or a cluster of traps,

as characterized by the logartihmic capacitance.

3 Summing the asymptotic expansion for the principal eigenvalue

In this section we derive a nonlinear transcendental equation that effectively sums the entire infinite logarithmic

expansion for the principal eigenvalue λ0 of (1.2). To do so we write the inner solution (2.8) as

yyy = ε−1xxx , v(yyy) ≡ Φ(εyyy) , (3.1)

where

v(yyy) = A(ν)vc(yyy) +O(σi) , ν ≡ −1/ log(εdc) , (3.2)

and σi � νk for any k ≥ 1. In addition, the eigenvalue and outer solution are expanded as

λ0 = λ0s(ν) +O(σ0) ; Φ = Φ0s(xxx; ν) +O(σ0) , (3.3)

where σ0 � νk for any k ≥ 1. By using the far-field behavior of vc(yyy) from (2.4) in (3.2) to match to the outer solution

we obtain that λ0s and Φ0s satisfy

∆Φ0s + λ0sΦ0s = 0 , xxx ∈ Ω\{000} ; Φ0s ∈ P , xxx ∈ ∂Ω , (3.4a)

Φ0s = A log |xxx|+ A

ν
+ o(1) , as xxx→ 000 ;

∫
Ω

Φ2
0s dxxx = 1 . (3.4b)

Since the local behavior in (3.4b) specifies the regular part of the singularity condition, this constraint effectively

determines an equation for λ0s.

The solution to (3.4) that has the correct singularity as xxx→ 0, and which satisfies
∫

Ω
Φ2

0s dxxx = 1, is simply

Φ0s = −2πAGλ(xxx) , where A =
1

2π

[∫
Ω

[Gλ(xxx)]
2
dxxx

]−1/2

, (3.5)

where Gλ(xxx) is the periodic Helmholtz Green’s function, with regular part Rλ, defined on the FWS cell Ω by

∆Gλ+λ0sGλ = −δ(xxx) , xxx ∈ Ω ; Gλ ∈ P , xxx ∈ ∂Ω , (3.6a)

Gλ = − 1

2π
log |xxx|+Rλ +O(|xxx|2 log |xxx|) , as xxx→ 000 . (3.6b)

Once again, since Ω has two lines of symmetry that intersect at the origin, the usual gradient term ∇xxxGλ|xxx=000 · xxx is

absent in the local behavior (3.6b).
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To derive the eigenvalue relation that will determine λ0s we let xxx→ 000 in (3.5) and equate the regular part of this

expression with that in (3.4b), which yields −2πARλ = A/ν. In this way, we obtain that λ0s is given by the smallest

positive root of the transcendental equation

Rλ = − 1

2πν
, where ν ≡ − 1

log(εdc)
, (3.7)

where Rλ depends on λ0s from the solution to (3.6).

The key to numerically implementing a root-finding condition on (3.7) for λ0s = λ0s(ν) is to derive a computa-

tionally tractable explicit formula for Rλ that can be used for an arbitrary Bravais lattice. The challenge is that it is

well-known that standard Fourier transform methods yield very slowly converging infinite series representations, which

are not well-suited for computations. To derive an alternative rapidly converging representation for Rλ, in Appendix

B we first summarize the methodology of [2], which is based on the Poisson summation formula. This approach of [2]

yields the explicit result

Gλ(xxx) =
∑
ddd∈Λ?

e−(4π2|ddd|2−λ0s)/η2

4π2|ddd|2 − λ0s
e2πixxx·ddd + Fsing(|xxx|) +

∑
lll∈Λ
lll 6=000

Fsing(|xxx+ lll|) , (3.8a)

valid for λ0s 6= 4π2|ddd|2 for any ddd ∈ Λ?. Here Fsing(r) is defined by

Fsing(r) ≡ 1

2π

∫ ∞
log η

e−
r2

4 e2s+λ0se
−2s

ds . (3.8b)

In (3.8a), Λ? is the dual lattice to Λ, which is defined in terms of reciprocal lattice vectors ddd1 and ddd2 by

Λ? =
{
mddd1 + nddd2

∣∣∣ m, n ∈ Z
}
, with dddi · lllj = δij , (3.9)

where δij is the Kronecker symbol. In (3.8), η > 0 is a user-defined Ewald cut-off parameter that is chosen so that the

infinite sums over the lattice and dual lattice both converge rapidly.

Next, we take the limit xxx→ 000 in (3.8) so as to identify that Rλ in (3.6b) is given by

Rλ ≡ lim
xxx→000

(
Gλ(xxx) +

1

2π
log |xxx|

)
. (3.10)

As is evident from (3.8), the logarithmic singularity for Gλ(xxx) as xxx→ 000 arises from the Fsing(|xxx|) term in (3.8b), owing

to the fact that the integrand defining Fsing(0) is not integrable. Our result for Rλ is as follows:

Principal Result 2 The regular part Rλ, as defined by (3.10), is given by

Rλ =
∑
ddd∈Λ?

e−(4π2|ddd|2−λ0s)/η2

4π2|ddd|2 − λ0s
+ Freg +

∑
lll∈Λ
lll 6=000

Fsing(|lll|) , (3.11a)

which is valid for λ0s 6= 4π2|ddd|2 for any ddd ∈ Λ?. Here Freg is given explicitly by

Freg =
1

4π

(
log 4− γe − 2 log η +

∫ λ0s/η
2

0

(es − 1)

s
ds

)
, (3.11b)

where γe is Euler’s constant, while Fsing(r) for r > 0 is given alternatively by

Fsing(r) =

∫ ∞
1

e−(ξ−1)κg(ξ) dξ , where g(ξ) ≡ e−κ+λ0s/(η
2ξ)

4πξ
, with κ ≡ η2r2

4
. (3.11c)
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To derive (3.11), we must isolate the singularity behavior as r → 0 from Fsing(r), as given in (3.8b), by using

asymptotics techniques for extracting global contributions from integrals (see chapter 3 of [9]). In (3.8b) we begin by

introducing the new variable t by

s = −1

2
log r2 +

1

2
log t , (3.12)

so that Fsing(r) in (3.8b) becomes

Fsing(r) =
1

4π

∫ ∞
η2r2

t−1e−t/4eλ0sr
2/t dt . (3.13)

Then, by setting t = η2r2ξ in (3.13) we derive the alternative expression (3.11c) for Fsing(r).

The singular behavior in (3.13) as r → 0 occurs from the lower endpoint in (3.13). To isolate this behavior we

introduce the intermediate scale δ for which η2r2 � δ � 1, so that

Fsing(r) =
1

4π

∫ δ

η2r2

t−1e−t/4eλ0sr
2/t dt+

1

4π

∫ ∞
δ

t−1e−t/4eλ0sr
2/t dt . (3.14)

In the first integral in (3.14) we can use e−t/4 ∼ 1 since η2r2 < t < δ satisfies t � 1. For the second integral, where

t ≥ δ, we have eλ0sr
2/t ∼ 1 since r2/δ � 1. In this way, for r → 0 and η2r2 � δ � 1, we obtain that (3.14) becomes

Fsing(r) ∼ 1

4π

∫ δ

η2r2

t−1eλ0sr
2/t dt+ E1 (δ/4) , (3.15)

where E1(w) ≡
∫∞
w
t−1e−t dt for w > 0 is the exponential integral. Upon using the well-known asymptotics E1(w) ∼

− logw − γe for w → 0+, where γe is Euler’s constant, we obtain that

Fsing(r) =
1

4π

∫ δ

η2r2

t−1eλ0sr
2/t dt+

1

4π
(log 4− γe − log δ) + o(1) . (3.16)

To estimate the integral in (3.16) we introduce a new variable t = η2r2ξ while adding and subtracting a common term

to get

Fsing(r) =
1

4π

∫ δ/(η2r2)

1

(
eλ0s/(η

2ξ) − 1
)

ξ
dξ +

1

4π

∫ δ/(η2r2)

1

1

ξ
dξ +

1

4π
(log 4− γe − log δ) + o(1) . (3.17)

The first integral on the right hand side of (3.17) is finite as the upper endpoint tends to infinity, i.e. since δ � O(r2),

while the second integral can be evaluated explicitly. This yields that

Fsing(r) =
1

4π

∫ ∞
1

(
eλ0s/(η

2ξ) − 1
)

ξ
dξ +

1

4π
log

(
δ

η2r2

)
+

1

4π
(log 4− γe − log δ) + o(1) . (3.18)

In this way, we obtain after cancelling log δ terms that

Fsing(r) = − 1

2π
log r + Freg + o(1) , as r → 0 , (3.19a)

where Freg is given by

Freg =
1

4π
(log 4− γe − 2 log η) +

1

4π

∫ ∞
1

(
eλ0s/(η

2ξ) − 1
)

ξ
dξ . (3.19b)

Finally, upon setting s = λ0s/(η
2ξ) in the integral in (3.19b), we obtain that (3.19b) reduces to the expression for

Freg given in (3.11b). Finally, upon using (3.19) in (3.8), we obtain (3.11) from the limiting process in (3.10). This

completes the derivation of Principal Result 2.

In Appendix C we provide a different derivation of the limiting behavior (3.19) for Fsing(r) as r → 0. In addition,

we provide an alternative integral representation for Fsing(r), valid for r > 0, than that given in (3.11c)
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3.1 Numerical Results

To determine λ0s = λ0s(ν) we use Newton’s method on (3.7), where the regular part is given in (3.11). The initial

guess for the Newton iteration scheme is given by the three-term asymptotic result (2.3) and a numerical Jacobian

was used. To approximate the sums over the infinite lattice, we introduce truncations Λ̄ and Λ̄? of the direct and

reciprocal lattices Λ and Λ?, respectively, which are defined in terms of M1 > 0 and M2 > 0 by

Λ̄ ≡
{
mlll1 + nlll2

∣∣−M1 < m,n < M1

}
, Λ̄? ≡

{
mddd1 + nddd2

∣∣−M2 < m,n < M2

}
, m, n ∈ Z . (3.20)

For our computations the Ewald parameter was chosen as η = 2.5, while M1 and M2 were selected so that the absolute

value of the increment obtained by increasing M1 and M2 by one in the two lattice sums in (3.11a) are each less than

10−8. This truncation criteria yielded (roughly) that M1 = 4 and M2 = 3. To numerically evaluate Fsing(r) in (3.11c),

we used a Gauss-Laguerre quadrature with Nq = 200 nodes. In addition, the integral in (3.11b) that has a removable

singularity at r = 0 was evaluated to high precision using a Gauss-Legendre quadrature.

0.01 0.02 0.03 0.04 0.05
1

2

3

4

0.01 0.02 0.03 0.04 0.05
1

2

3

4

Figure 3: The asymptotic result λ0s computed from (3.7), which is accurate to all orders in ν, is compared with the two-term λ2T

and three-term λ3T result, as obtained from (2.3), for a circular trap of radius ε. As the trap radius increases, the three-term
result deviates from λ0s. Left panel: square lattice. Right panel: hexagonal lattice. The results are very similar for both lattices.

For a square and hexagonal lattice with a circular trap of radius ε centered at the lattice points, for which dc = 1,

in Fig. 3 we compare the numerically-computed result for λ0s with the two-term and three-term asymptotic result,

as obtained from (2.3), as ε is varied. Although the three-term result is seen to provide a decent approximation for

ε small, the improved result λ0s, which effectively sums all the logarithmic correction terms, provides a significantly

better approximation to λ0 at moderate values of ε.

In Fig. 4 we fix the circular trap radius at ε = 0.02 (left panel) and at ε = 0.05 (right panel) and we compare

λ0s, as computed from (3.7), with the two-term and three-term asymptotic results of (2.3) for a one-parameter sweep

through the class of Bravais lattices with generators lll1 = (1/
√

sin(θ), 0)T and lll2 = (cos(θ)/
√

sin(θ),
√

sin(θ))T on the

range π/10 ≤ θ ≤ π/2. From this figure, we observe that λ0s, and not just the two-term expansion, is maximized for

a hexagonal lattice.

The results shown in Fig. 3 and Fig. 4 for a circular trap of radius ε also apply to a trap of arbitrary shape by

simply relabeling the horizontal axes in these figures by εdc. The logarithmic capacitance dc for Ω0, as defined by the

canonical problem (2.4), depends on the shape of Ω0 but is invariant under rotations of Ω0. In Table 1, numerical

values for dc are given for various specific trap shapes Ω1 (cf. [23]). For a general trap shape, a boundary integral

numerical method, such as described in [7], can be used to numerically compute dc.
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Figure 4: For a circular trap of radii ε = 0.02 (left panel) and ε = 0.05 (right panel), the asymptotic result λ0s, computed from
(3.7), is compared with the two and three-term asymptotic results, as obtained from (2.3) for a one-parameter sweep through the
class of Bravais lattices with generators lll1 = (1/

√
sin(θ), 0)T and lll2 = (cos(θ)/

√
sin(θ),

√
sin(θ))T on the range π/10 ≤ θ ≤ π/2.

We observe that λ0s is maximized for the hexagonal lattice with π/3.

Shape of Ω0 ≡ ε−1Ωε Logarithmic capacitance dc

circle, radius a dc = a

ellipse, semi-axes a, b dc = a+b
2

equilateral triangle, sidelength h dc =
√

3 Γ( 1
3 )

3
h

8π2 ≈ 0.422h

isosceles right triangle, short side h dc =
33/4Γ( 1

4 )
2
h

27/2π3/2 ≈ 0.476h

square, sidelength h dc =
Γ( 1

4 )
2
h

4π3/2 ≈ 0.5902h

Table 1: The logarithmic capacitance dc for some cross-sectional shapes of Ω0 ≡ ε−1Ωε.

4 Transcendentally small effects

In this section, we determine transcendentally small corrections in the asymptotic approximation of the principal

eigenvalue λ0 for (1.2). For a general trap shape Ω0, the dipole term in the canonical inner problem (2.4) determines

that the correction term for the eigenfunction in the outer region is O(ε). As such, we expand the principal eigenvalue

and its corresponding eigenfunction in the outer region as

λ0 ∼ λ0s(ν) + ελ1s(ν) + · · · ; Φ = Φ0s(xxx; ν) + εΦ1s(xxx; ν) + · · · . (4.1)

The inner solution v = Φ(εy) ∼ Avc(yyy), where vc satisfies (2.4) with far-field behavior (2.8), yields the following

matching condition for the outer solution Φ as xxx→ 000:

Φ = A log |xxx|+ A

ν
+ εA

pppc·xxx
|xxx|2 +O(ε2) . (4.2)

Upon substituting (4.1) into (1.2), and collecting O(ε) terms in (1.2) and (4.2), we obtain that Φ1s satisfies

∆Φ1s + λ0sΦ1s = −λ1sΦ0s , xxx ∈ Ω\{000} ; Φ1s ∈ P , xxx ∈ ∂Ω , (4.3a)

Φ1s ∼ A
pppc·xxx
|xxx|2 as xxx→ 000 ;

∫
Ω

Φ1sΦ0s dxxx = 0 . (4.3b)
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To determine λ1s we apply Green’s second identity to the PDE’s (3.4) and (4.3) for Φ0s and Φ1s over the region

Ω\Bµ, where Bµ is a disk of radius µ > 0 centered at xxx = 000. By using the periodicity condition on ∂Ω, we derive

λ1s

∫
Ω\Bµ

Φ2
0s dxxx =

∫
∂Bµ

(Φ1s∂nΦ0s − Φ0s∂nΦ1s) ds , (4.4)

where the outward normal derivative ∂n points into the disk Bµ. Taking the limit µ → 0+ in (4.4), while using∫
Ω

Φ2
0s dxxx = 1 and ∂n = −∂r with r ≡ |xxx| = µ on ∂Bµ, we obtain that

λ1s = lim
µ→0

∫ 2π

0

(Φ0s∂rΦ1s − Φ1s∂rΦ0s)
∣∣∣
r=µ

µds . (4.5)

Since Φ0s = −2πAGλ(xxx), we use the local behavior as xxx→ 000 for Gλ in (3.6b), together with (4.3b) for Φ1s, to calculate

on r = µ with µ� 1 that

Φ0s = A logµ− 2πARλ +O(µ2 logµ) , ∂rΦ0s =
A

µ
+O(µ logµ) , Φ1s ∼ A

pppc·eee
µ

, ∂rΦ1s ∼ −A
pppc·eee
µ2

, (4.6)

where eee ≡ (cos θ, sin θ)T . Upon substituting (4.6) into (4.5), we use
∫ 2π

0
pppc·eee dθ = 0 to conclude that λ1s = 0. With

λ1s = 0, we can write the problem (4.3) for Φ1s as

∆Φ1s + λ0sΦ1s = 2πApppc·∇xxxδ(xxx) , xxx ∈ Ω ; Φ1s ∈ P , xxx ∈ ∂Ω ;

∫
Ω

Φ1sΦ0s dxxx = 0 . (4.7)

As such, for a general trap shape, we conclude that λ0 ∼ λ0s + o(ε).

Although it is challenging to explicitly determine the first non-vanishing correction to λ0s for an arbitrary trap

shape, we now show how to determine this eigenvalue correction for the special case where the trap Ωε is a disk of

radius ε. For this trap shape, we have dc = 1, pppc = 000, Φ1s ≡ 0 from (4.7), and vc = log |yyy| for |yyy| ≥ 1. The following

more refined result for the local behavior of Gλ(xxx) as xxx→ 000 is essential for the higher-order analysis below:

Lemma 1 In the limit xxx→ 0, the Helmholtz Green’s function Gλ(xxx), which satisfies (3.6), has the local behavior

Gλ = − 1

2π
log |xxx|+Rλ +

λ0s

8π
|xxx|2 log |xxx| −

(
λ0s

8π
+
λ0sRλ

4

)
|xxx|2 +H11x

2
1 + 2H12x1x2 +H22x

2
2 + o(|xxx|2) , (4.8)

where xxx = (x1, x2)T . Here, H11, H12, and H12 are constants with H11 +H22 = 0.

To derive (4.8) we use a dominant balance argument. For r = |xxx| � 1, we set

Gλ = − 1

2π
log r +Rλ + c0r

2 log r + c1r
2 +H(xxx) , (4.9)

in (3.6) to obtain after a short calculation that

∆H+ λ0sH =

(
λ0s

2π
− 4c0

)
log r − (4c1 + 4c0 + λ0sRλ)− c0λ0sr

2 log r − λ0sc1r
2 . (4.10)

By eliminating the coefficients of the logarithmic and the constant term on the right-hand side of (4.10) we conclude

that c0 = λ0s/(8π) and c1 = −c0 − λ0sRλ/4. With these choices, we obtain that ∆H + λ0sH = O(r2 log r) as r → 0.

The most general solution for H with H = O(|xxx|2) as xxx→ 000 has the form H = H11x
2
1 + 2H12x1x2 +H22x

2
2 + o(|xxx|2),

where H11 +H22 = 0. With c0, c1, and H determined in this way, we obtain the local expansion (4.8) from (4.9). We
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remark that the coefficients H11, H22, and H12 are global quantities that depend on the particular lattice and their

values can not be determined from a local analysis.

For a circular trap of radius ε, for which dc = 1, we recall from (3.7) that λ0s is the smallest positive root of

Rλ = (2π)−1 log ε (see (3.7)). By setting xxx = εyyy and Rλ = (2π)−1 log ε in (4.8), we readily derive in terms of the inner

variable |yyy| that

Gλ ∼ −
1

2π
log |yyy|+ ε2λ0s

8π

(
|yyy|2 log |yyy| − |yyy|2

)
+
ε2|yyy|2

2
(H11 −H22) cos(2θ) + ε2H12|yyy|2 sin(2θ) , (4.11)

where yyy = |yyy|(cos θ, sin θ)T .

Next, we use (4.11) to perform a higher-order matching between the inner and outer expansions for the eigenfunction

for the case of a circular trap. We expand the eigenvalue and the eigenfunction in the outer region as

λ0 ∼ λ0s(ν) + ε2λ2s(ν) + · · · ; Φ = Φ0s(xxx; ν) + ε2Φ2s(xxx; ν) + · · · , (4.12)

where Φ0s = −2πAGλ(xxx). In the inner region, we expand v(yyy) = Φ(εyyy) as

v(yyy) = Avc(yyy) + ε2v1(yyy) + · · · , (4.13)

where vc(yyy) = log |yyy|. We substitute (4.13) into (1.2), while using the coefficient of the O(ε2) term in (4.11) to

determine the far-field behavior of v1(yyy). In this way, we obtain that v1 satisfies

∆yyyv1 = −λ0sAvc(yyy) , in |yyy| ≥ 1 ; v1 = 0 , on |yyy| = 1 ,

v1 ∼ −
Aλ0s

4

(
|yyy|2 log |yyy| − |yyy|2

)
−πA|yyy|2 [(H11 −H22) cos(2θ) +H12 sin(2θ)] , as |yyy| → ∞ .

(4.14)

The exact solution to this problem is

v1 = −Aλ0s

4

(
|yyy|2 log |yyy|+ 1− |yyy|2

)
− πA

(
|yyy|2 − 1

|yyy|2
)

[(H11 −H22) cos(2θ) +H12 sin(2θ)] . (4.15)

Letting |yyy| → ∞ in (4.15), and recalling the inner expansion (4.13), we obtain that there is an unmatched term

−ε2Aλ0s/4, which must be accounted for by the outer expansion (4.12). In this way, by substituting (4.12) into (1.2)

we conclude that Φ2s satisfies

∆Φ2s + λ0sΦ2s = −λ2sΦ0s , xxx ∈ Ω\{000} ; Φ2s ∈ P , xxx ∈ ∂Ω , (4.16a)

Φ2s ∼ −
Aλ0s

4
as xxx→ 000 ;

∫
Ω

Φ2sΦ0s dxxx = 0 . (4.16b)

Next, as similar to the derivation of (4.5), we obtain from Green’s identity applied to Φ0s and Φ2s that

λ2s = lim
µ→0

∫ 2π

0

(Φ0s∂rΦ2s − Φ2s∂rΦ0s)
∣∣∣
r=µ

µds . (4.17)

By using (4.6) for Φ0s on r = µ� 1, together with the local behavior (4.16b) for Φ2s, we readily calculate from (4.17)

that

λ2s =
πA2λ0s

2
, (4.18)

where A is given in (3.5). We summarize our result as follows:
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Principal Result 3 For ε → 0, the asymptotic expansion for the principal eigenvalue λ0 for (1.2) for an arbitrary

oblique Bravais lattice, and with a circular trap of radius ε centered at each of the lattice points, is

λ0 ∼ λ0s +
ε2λ0s

8π

[∫
Ω

G2
λ dxxx

]−1

+ · · · . (4.19a)

Here λ0s is the smallest positive root of Rλ = (2π)−1 log ε. By estimating the integral in (4.19a), we obtain the explicit

approximation

λ0 = λ0s + ε2π2ν3
[
1− 6πνRp +O(ν2)

]
, with ν = −1/ log ε , (4.19b)

where Rp is the regular part of the periodic source-neutral Green’s function, as given in (2.2b) for an arbitrary Bravais

lattice.

To derive (4.19b) from (4.19a), we use the λ0s � 1 approximation in the PDE (3.6) to readily calculate that

Gλ = − 1

λ0s
+Gp +O(λ0s) , (4.20)

where Gp is the periodic source-neutral Green’s function satisfying (2.1), and given explicitly by (2.2). Since
∫

Ω
Gp dxxx =

0, we obtain for λ0s � 1 that∫
Ω

G2
λ dxxx =

1

λ2
0s

+O(1) , so that
λ0s

8π

[∫
Ω

G2
λ dxxx

]−1

=
λ3

0s

8π

(
1−O(λ2

0s)
)
. (4.21)

Finally, the explicit result (4.19b) is obtained by substituting λ0s ∼ 2πν − 4π2Rpν
2, as given in (2.3), into the last

relation in (4.21) where ν ≡ −1/ log ε.

4.1 Numerical Validation of Asymptotic Theory

In this sub-section we compare our asymptotic approximations for the fundamental eigenvalue of (1.2) for a circular

trap of radius ε centered at the lattice points with corresponding numerical results computed from FlexPDE [8]. The

FlexPDE computations are done in both a square and a regular hexagonal FWS cell with periodic boundary conditions.

Although it is straightforward to solve eigenvalue problems with FlexPDE [8], here we have the additional challenge

that version 6.50 of FlexPDE, which we are using, does not fully support multiple periodic boundary conditions.

Hence, care must be taken in imposing boundary conditions at the domain vertices to avoid mapping them to two

different points. To circumvent this difficulty, very small segments with homogeneous Neumann boundary conditions

must be added before and after each vertex. We chose the length of such segment to be ρ ≈ 0.001, which results in a

very fine mesh at the corners (in addition to the region near the trap). For both the square and hexagonal lattices, and

for a few different radii of the circular traps, in Table 2 we give the asymptotic predictions based on the three-term

approximation from (2.3), the log-summed approximation from (3.7) and (3.11), and the improved approximation in

(4.19b) as obtained by including the first transcendentally small terms. The corresponding FlexPDE results are given

in the last column of Table 2. From this table, we observe a very close agreement between the FlexPDE results and

both the log-summed and improved approximation when ε is small. Even at the moderately large value ε = 0.1, the

error in using the improved approximation (4.19b) is only roughly 4.5%. In contrast, while the three-term result (2.3)

provides only a decent approximation when ε is very small, the agreement with the FlexPDE result is rather poor

when ε = 0.1. These results show that from a simple Newton iteration based on (3.7) and (3.11) a rather accurate
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approximation for the principal eigenvalue can be achieved even for only moderately small ε. We emphasize that

such approximation can be done for an arbitrary Bravais lattice. For ε = 0.05, in Fig. 5 we give contour plots of the

eigenfunction associated with the first eigenvalue in both the square (left panel) and the hexagonal (right panel) FWS

cells.

ε Lattice λ3T λ0s (4.19b) λ0N (FlexPDE)

0.01 square 1.8533 1.880026 1.880044 1.880017

0.02 square 2.3084 2.360634 2.360766 2.360776

0.03 square 2.6896 2.771263 2.771799 2.771913

0.05 square 3.3806 3.534722 3.536845 3.538754

0.10 square 5.0872 5.500804 5.522693 5.559822

0.01 hexagon 1.8586 1.887048 1.887078 1.887050

0.02 hexagon 2.3163 2.372161 2.372294 2.372306

0.03 hexagon 2.6999 2.787662 2.788101 2.788325

0.05 hexagon 3.3960 3.562928 3.565060 3.567066

0.10 hexagon 5.1173 5.577959 5.599959 5.639788

Table 2: Comparison of the three-term λ3T result (see (2.3)), the log-summed approximation λ0s, the improved approximation
(4.19b) with a few transcendentally small terms, and the full numerical FlexPDE [8] result λ0N for the principal eigenvalue of
(1.2). For the FlexPDE numerical computation we set the error tolerance to be 1×10−5, which controls the number of successive
mesh refinement before providing the solution. The trap is circular with radius ε and is centered at the origin of the FWS cell
for the lattice.

Figure 5: Contour plot of the FlexPDE [8] numerically-computed eigenfunction corresponding to the principal eigenvalue of (1.2)
in the FWS cell given by the unit square (left panel) and the regular hexagon (right panel), each of unit area, for a square and
hexagonal lattice of traps, respectively. A circular trap of radius ε = 0.05 is centered at the origin.

4.2 Numerical calculation of the logarithmic capacitance and dipole of a trap cluster

When the trap set Ω0 consists of a collection of m > 1 non-overlapping disks, the simple numerical approach of [11],

as inspired by the methodology introduced in [26], can be used to numerically estimate the logarithmic capacitance dc

and dipole vector pppc from (2.4).

The approach of [26] is based on using a series solution to Laplace’s equation with unknown coefficients. By using
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a least-squares fit to the homogeneous Dirichlet condition on the boundary of each circular trap, the coefficients in the

series are then estimated numerically. In [11], vc was taken to have the form (see also equations (3.1) and (3.2) of [26])

vc(z) = − log dc +

m∑
j=1

ej log |z − cj |+
m∑
j=1

n∑
k=1

(
ajk Re(z − cj)−k + bjk Im(z − cj)−k

)
, (4.22)

where we impose the additional condition that
∑m
j=1 ej = 1. In (4.22), z ∈ C corresponds to the point yyy in complex

coordinates, cj ∈ C is the center of the jth trap in the cluster, and m is the number of traps in the cluster. The

real-valued constants log d1c, ej , ajk, and bjk for j = 1, . . . ,m and k = 1, . . . , n are determined so that the boundary

condition vc = 0 on each trap is satisfied in the sense of least-squares. By imposing vc(z) = 0 at 3n uniformly spaced

points on the boundary of each trap, a 3nm+ 1 linear algebraic system of equations is obtained with (2nm+m+ 1)

unknowns. The backslash command in MATLAB [18] is then used to numerically perform the least-squares fit. In our

computations below we show that n = 10 yields highly accurate results when compared with exact solutions that are

available for a two-trap cluster.

Next, we show how to identify an approximation to the dipole term in (2.4). For |z| � 1, we use the estimates

log |z − cj | = log |z| − Re(zc̄j)

|z|2 +O(|z|−2) , Re(z − cj)−1 ∼ Re(z)

|z|2 , Im(z − cj)−1 ∼ Im(z̄)

|z|2 , (4.23)

in (4.22) to obtain for |z| � 1, with z = y1 + iy2, that

vc ∼ log |yyy| − log dc +
p̂ppc·yyy
|yyy|2 + · · · , p̂ppc ≡

 m∑
j=1

(aj1 − ejRe(c̄j)),−
m∑
j=1

(bj1 − ejIm(c̄j))

 . (4.24)

In this way, p̂ppc is the numerical approximation to the dipole vector pppc in (2.4).

Figure 6: Left panel: two circular traps each of unit radius in the inner region with center-to-center separation lc. Right panel:
a three-trap cluster with traps each of unit radius centered at (lc, 0) and

(
−
√

3lc/2,±lc/2
)
.

We now use this simple numerical approach to approximate dc and pppc for the two- and three-trap clusters of circular

traps of a common radius as shown in Fig. 6. For the two-trap case, where there are two lines of symmetry through the

origin, we conclude that pppc ≡ 000. By solving (2.4) using bipolar coordinates as in Appendix A of [15], the logarithmic

capacitance of a two-trap cluster having a center-to-center separation lc > 2 is

log dc =
1

2
log
(
l2c − 4

)
− β

2
+

∞∑
k=1

e−kβ

k cosh(kβ)
, β ≡ cosh−1 (lc/2) . (4.25)
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In Fig. 7 we compare the analytical result for dc for a two-trap cluster with the corresponding numerical result

computed from (4.22) on the range lc > 2 with n = 10. From the right panel of Fig. 7 we observe that the numerical

result predicts the analytical result for dc in (4.25) with high precision on the entire range lc > 2. For the two-trap

cluster, our numerical approximation in (4.24) for the dipole vector yields that |p̂ppc| ≈ 10−15.
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Figure 7: Comparison of analytical and numerical result for dc versus lc for a two-trap cluster with disks of a common unit
radius in the inner coordinate. The right panel, showing the error in the approximation, indicates that the numerical result based
on (4.22) with n = 10 provides a highly accurate determination of dc.

In Fig. 8 we plot the numerical approximation for dc and the x-component of the dipole vector pppc for the three-trap

cluster shown in the right panel of Fig. 6 as lc > 1 is varied. Theoretically, since the three-trap cluster is symmetric

about the line y2 = 0, it follows that the y-component pcy of the dipole vector must vanish. Our numerical results

yield that p̂cy ≈ 10−15 on the range lc > 1.
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Figure 8: The numerical approximation, obtained from (4.22) and (4.24), for the logarithmic capacitance dc (left panel) and for
the x-component pcx (right panel) of the dipole vector pppc = (pcx, 0)T as lc > 1 is varied for the three-trap cluster shown in the
right panel of Fig. 6.

5 Discussion

The goal of this paper was to derive and numerically evaluate asymptotic approximations, of various accuracy, for the

principal eigenvalue of the Laplacian with a periodic arrangement of localized traps of spatial extent O(ε) centered at

the lattice points of an arbitrary Bravais lattice in R2. In our analysis, the traps can either be isolated or within a
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trap cluster, and they are characterized by the logarithmic capacitance dc associated with the far-field behavior of the

canonical problem (2.4) defined near the trap set. We showed how to obtain accurate numerical solutions for dc when

the trap set consists of a collection of non-overlapping disks.

For ε → 0, in Principal Result 1 we derived a three-term approximation in powers of ν = −1/ log(εdc) for this

principal eigenvalue. The lattice-dependent coefficients in this series were readily evaluated numerically using an

explicit formula in [6] for the source-neutral periodic Green’s function and its regular part. Next, we obtained a much

improved approximation for the principal eigenvalue, which captures all of the logarithmic terms in powers of ν, from

applying a simple Newton iteration scheme to a transcendental equation involving the regular part of the periodic

Helmholtz Green’s function. For the viability of this approach, it was critical to extend the methodology of [2] to provide

a rapidly converging infinite series representation for the regular part of this Green’s function for an arbitrary Bravais

lattice. Based on comparisons of our approximations for the principal eigenvalue with corresponding full numerical

results from the PDE eigenvalue problem, we showed that while the three-term asymptotic approximation agrees

well with the numerical result only for a rather small trap radius, the asymptotic result based on the transcendental

equation provides a highly accurate prediction of the principal eigenvalue even for only a moderately small trap radius.

Finally, we remark that the transcendental equation (3.7) for the log-summed approximation to the principal

eigenvalue of the Laplacian still applies for other types of defects, but with a different expression for dc. As an

illustration of this, suppose that the hole in (1.2) is replaced by a localized compactly-supported piecewise-constant

potential centered at the lattice points, so that in the FWS cell we have the following eigenvalue problem with ε� 1:

4Φ +
(
λ+ ε−2W

[
ε−1|xxx|

])
Φ = 0 , xxx ∈ Ω ; Φ ∈ P , xxx ∈ ∂Ω ; W (ρ) ≡

{
0 , ρ > 1 ,

W0 , 0 ≤ ρ < 1 ,
(5.1)

where W0 is a constant. The corresponding radially symmetric inner problem, which replaces (2.4), is now

v′′c + ρ−1v′c +W (ρ)vc = 0 , ρ ≥ 0 ; vc = log ρ− log dc + o(1) , as ρ→∞ . (5.2)

The constant dc in (5.2) is readily calculated from the explicit solution to (5.2) by imposing C1 continuity of vc across

ρ = 1. In this way, we obtain that the transcendental equation (3.7) still holds, but where dc is now given by

log dc = − J0(
√
V0)√

V0J ′0(
√
V0)

, for 0 < V0 < z2
0 ; log dc = − I0(

√
|V0|)√

|V0|I ′0(
√
|V0|)

, for V0 < 0 . (5.3)

Here J0(z) and I0(z) are the Bessel and modified Bessel functions of the first kind of order zero, respectively, and z0

is the first positive root of J ′0(z) = 0. Vibration problems with strongly concentrated masses can be treated similarly.
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Appendices

A Formulation on the fundamental Wigner Seitz cell

In this appendix, we provide a more refined description of the FWS cell, as was discussed in §2.2 of [10]. For a general

Bravais lattice, there are eight nearest neighbor lattice points to xxx = 000 given by the set

P ≡ {mlll1 + nlll2 | m ∈ {0, 1,−1} , n ∈ {0, 1,−1} , (m,n) 6= 0} . (A.4)

For each (vector) point PPP i ∈ P , for i = 1, . . . , 8, the Bragg line Li is defined as the line that crosses the point PPP i/2

orthogonally to PPP i. The unit outer normal to Li is labeled by ηηηi ≡ PPP i/|PPP i|. The convex hull generated by these Bragg

lines is the FWS cell Ω. Specifically, for the hexagonal lattice (1.1) its boundary ∂Ω is the union of exactly six Bragg

lines, while for a square lattice the boundary of ∂Ω consists of four Bragg lines. Generically, for an oblique Bravais

lattice, ∂Ω is the union of six Bragg lines. The centers of the Bragg lines generating ∂Ω are re-indexed as PPP i/2 for

i = 1, . . . , L, where L ∈ {4, 6}. The boundary ∂Ω of Ω is the union of the re-indexed Bragg lines Li for i = 1, . . . , L.

The boundary ∂Ω is then parameterized segment-wise as

∂Ω =
{
xxx ∈

⋃
i

{PPP i
2

+ tηηη⊥i }
∣∣∣ − ti ≤ t ≤ ti , i = 1, . . . , L , L ∈ {4, 6}

}
. (A.5)

Here 2ti is the length of Li, while ηηη⊥i is the direction perpendicular to PPP i, which is, therefore, tangent to Li. From

this construction, it follows that Bragg lines on ∂Ω must come in pairs. In particular, if PPP is a neighbor of 000 and the

Bragg line crossing PPP/2 lies on ∂Ω, it follows by symmetry that the Bragg line crossing −PPP/2 must also lie on ∂Ω.

Figure 9: Schematic of the detailed construction of the FWS cell showing the three pairs of parallel Bragg lines for the specific
oblique lattice in Fig. 1. The trap (black circle) of measure O(ε) is centered at the origin.

Next, we reformulate the PDE (3.6) for the periodic Helmholtz Green’s function Gλ on R2 to an equivalent PDE

on the FWS cell. This is done by imposing a boundary operator P on ∂Ω that incorporates the periodic condition in

(3.6). This equivalent PDE is

∆Gλ + λ0sGλ = −δ(xxx) , xxx ∈ Ω ; Gλ ∈ P , xxx ∈ ∂Ω ; Rλ ≡ lim
xxx→000

(
Gλ(xxx) +

1

2π
log |xxx|

)
. (A.6)

In (A.6), the boundary operator is defined by

P ≡
{
u
∣∣∣ ( u(xxxi1)

∂nu(xxxi1)

)
=

(
u(xxxi2)
∂nu(xxxi2)

)
, ∀xxxi1 ∈ Li , ∀xxxi2 ∈ L−i , i = 1, . . . , L/2

}
. (A.7)
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Here Li and L−i denote two parallel Bragg lines on opposite sides of ∂Ω for i = 1, . . . , L/2, while xxxi1 ∈ Li and

xxxi2 ∈ L−i are any two opposing points on these Bragg lines. A schematic plot of the FWS cell showing the pairs of

Bragg lines for the particular oblique lattice of Fig. 1 is given in Fig. 9.

B The periodic Helmholtz Green’s function

In this appendix we outline the approach used in [2] for deriving (3.8). We begin by representing the solution to (3.6)

as the sum of free-space Green’s functions

Gλ(xxx) =
∑
lll∈Λ

Gfree(xxx+ lll) , (B.1)

which ensures that the periodicity condition in (3.6) is satisfied. Then, to analyze (B.1) we use the Poisson summation

formula which converts a sum over the Bravais lattice Λ to a sum over the reciprocal lattice Λ? of (3.9). In the notation

of [2], we have that this summation formula is given by (see Proposition 2.1 of [2])∑
lll∈Λ

f(xxx+ lll) =
1

|Ω|
∑
ddd∈Λ?

f̂(2πddd) e2πixxx·ddd , xxx ∈ R2 . (B.2)

Here |Ω| is the area of the primitive cell of the lattice, while f̂ is the Fourier transform of f , defined on R2 by

f̂(ppp) ≡
∫
R2

f(xxx) e−ixxx·ppp dxxx , f(xxx) =
1

4π2

∫
R2

f̂(ppp) eippp·xxx dppp . (B.3)

Upon applying (B.2) to (B.1) we obtain that the sum over the reciprocal lattice consists of free-space Green’s

functions in the Fourier domain. By taking the Fourier transform of the PDE ∆Gfree + λ0sGfree = −δ(xxx) for the

free-space Green’s function, we obtain that Ĝfree(ppp) = Ĝfree(|ppp|), where

Ĝfree(ρ) =
1

ρ2 − λ0s
, with ρ ≡ |ppp| , (B.4)

for ρ2 6= λ0s. Then, from (B.2) and (B.1), and by using |Ω| = 1, we obtain that

Gλ(xxx) =
1

|Ω|
∑
ddd∈Λ?

Ĝfree(2πddd) e2πixxx·ddd =
∑
ddd∈Λ?

e2πixxx·ddd

4π2|ddd|2 − λ0s
. (B.5)

In order to obtain a rapidly converging infinite series representation for Gλ(xxx), we introduce the decomposition

Ĝfree(2πddd) = α(2πddd, η) Ĝfree(2πddd) +
(

1− α(2πddd, η)
)
Ĝfree(2πddd) , (B.6)

where the function α(2πddd, η) is defined by

α(2πddd, η) = exp

(
−
[
4π2|ddd|2 − λ0s

]
η2

)
. (B.7)

Here η > 0 is a real-valued cutoff parameter. When 4π2|ddd|2 > λ0s we readily calculate that

lim
η→0

α(2πddd, η) = 0 ; lim
η→∞

α(2πddd, η) = 1 .
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With this choice for α, the sum over ddd ∈ Λ? in (B.5) of the first set of terms in (B.6), as labeled by

Gfourier(xxx) ≡
∑
ddd∈Λ?

exp

(
−
[
4π2|ddd|2 − λ0s

]
η2

)
e2πixxx·ddd

4π2|ddd|2 − λ0s
, (B.8)

converges absolutely when λ0s 6= 4π2|ddd|2 for any ddd ∈ Λ?.

Next, we calculate the lattice sum in (B.5) over the second set of terms in (B.6) by using the inverse transform

(B.3) after first writing (1− α) Ĝfree as an integral. To do so, we define ρ ≡ 2π|ddd|, so that from (B.7) and (B.4)

(1− α(2πddd, η)) Ĝfree(2πddd) =
1

ρ2 − λ0s

(
1− exp

(
−
[
ρ2 − λ0s

]
η2

))
= χ̂(ρ) ≡

∫ ∞
log η

2 e−(ρ2−λ0s) e−2s−2s ds . (B.9)

In recognizing the middle term in (B.9) as the integral χ̂(ρ) we used the easily verified definite integral

2

∫ ∞
log η

e−(ρ2−λ0s)e−2s−2s ds =
e−(ρ2−λ0s)e−2s

ρ2 − λ0s

∣∣∣s=∞
s=log η

=
1

ρ2 − λ0s

(
1− exp

(
−
[
ρ2 − λ0s

]
η2

))
. (B.10)

Next, we take the inverse Fourier transform of (B.9). To do so, we use two key facts. Firstly, the inverse Fourier

transform of a radially symmetric function f̂(ρ) is the inverse Hankel transform of order zero (cf. [21]), so that

f(r) = (2π)−1
∫∞

0
f̂(ρ) J0(ρr) ρ dρ. Secondly, from [21], we recall the well-known inverse Hankel transform∫ ∞

0

e−ρ
2 e−2s

ρ J0(ρr) dρ =
1

2
e2s−r2 e2s/4 .

In this way, we calculate using the definition of χ̂(ρ) in (B.9) that

χ(r) ≡ 1

2π

∫ ∞
0

χ̂(ρ) J0(ρr) ρ dρ =
1

π

∫ ∞
log η

e−2s+λ0se
−2s

(∫ ∞
0

e−ρ
2e−2s

ρ J0(ρr) dρ

)
ds

=
1

2π

∫ ∞
log η

e−2s+λ0se
−2s

e2s− r24 e2s ds =
1

2π

∫ ∞
log η

e
−
(
r2

4 e2s−λ0s e
−2s

)
ds .

In the notation of [2], we then define Fsing(|xxx|) as

Fsing(|xxx|) ≡ 1

2π

∫ ∞
log η

e
−
(
|xxx|2

4 e2s−λ0s e
−2s

)
ds . (B.11)

Therefore, by using the Poisson summation formula (B.2) to calculate lattice sum in (B.5) over the second set of terms

in (B.6), we obtain

Gspatial(xxx) ≡ Fsing(|xxx|) +
∑
lll∈Λ
lll 6=000

Fsing(|xxx+ lll|) . (B.12)

In summary, the periodic Helmholtz Green’s function in the spatial domain, satisfying (3.6), is Gλ(xxx) = Gfourier(xxx)+

Gspatial(xxx), representing the sum of (B.8) and (B.12). In this way, we obtain the result given in (3.8). In terms of the

Ewald cut-off parameter η, we observe from (B.8) that Gfourier(xxx)→ 0 as η → 0, while from (B.12) and (B.11) we get

that Gspatial(xxx)→ 0 as η →∞.
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C An alternative derivation for Fsing(r) and its singular behavior

In this appendix we provide an alternative derivation of the singular behavior for Fsing(r) in (3.19) as r → 0. We begin

by balancing the two terms in the exponential in (3.8b) by defining sm by r2e2sm/4 = λ0se
−2sm . Then, in (3.8b), we

introduce the new variable t defined by

s = sm +
t

2
, where sm =

1

4
log

(
4λ0s

r2

)
, (C.1)

so that (3.8b) becomes

Fsing(r) =
1

4π

∫ ∞
β

e−r
√
λ0s sinh t dt , where β ≡ log

(
η2r

2
√
λ0s

)
. (C.2)

Next, we recall Schläffi’s representation for the Bessel function of the second kind of order zero, Y0(x), as given for

x > 0 by (cf. [19])

Y0(x) =
1

π

∫ π

0

sin (x sin t) dt− 2

π

∫ ∞
0

e−x sinh t dt . (C.3)

Setting x =
√
λ0sr in (C.3), we use (C.3) to write (C.2) as

Fsing(r) = −1

8
Y0

(
r
√
λ0s

)
+

1

8π

∫ π

0

sin
(
r
√
λ0s sin t

)
dt+ J , where J ≡ 1

4π

∫ 0

β

e−r
√
λ0s sinh t dt . (C.4)

Next, since β → −∞ as r → 0+, while sinh t→ −∞ as t→ −∞, it follows that J is unbounded as r → 0. To analyze

the singular behavior of J , we introduce the new variable s by s = sinh t/ sinhβ in the integrand to obtain that

Fsing(r) = −1

8
Y0

(
r
√
λ0s

)
+

1

8π

∫ π

0

sin
(
r
√
λ0s sin t

)
dt+ J , where J ≡ − sign(β)

4π

∫ 1

0

e−rs
√
λ0s sinh β√

s2 + csch2β
ds . (C.5)

Next, we use (C.2) for β to calculate

sinhβ = −
√
λ0s

η2r
+

η2r

4
√
λ0s

∼ −
√
λ0s

η2r
as r → 0+ . (C.6)

In this way, and by using sign(β) = −1, we obtain for r � 1 that

J ∼ 1

4π

∫ 1

0

esλ0s/η
2√

s2 + µ2
ds , where µ ≡ rη2

√
λ0s

. (C.7)

We then add and subtract a term in (C.7) as

J ∼ 1

4π

∫ 1

0

(
esλ0s/η

2 − 1
)

√
s2 + µ2

ds+
1

4π

∫ 1

0

1√
s2 + µ2

ds , (C.8)

so that the first integral is now convergent as µ→ 0, corresponding to r → 0+. Moreover, the second integral in (C.8)

can be evaluated explicitly. This yields that

J ∼ 1

4π

∫ 1

0

(
esλ0s/η

2 − 1
)

s
ds+

1

4π
log

(√
1 +

s2

µ2
+
s

µ

)∣∣∣1
0
,

∼ 1

4π

∫ 1

0

(
esλ0s/η

2 − 1
)

s
ds− 1

4π
logµ+

1

4π
log
(

1 +
√

1 + µ2
)
.

(C.9)
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By using µ = rη2/
√
λ0s in the last line of (C.9), and by changing variables in the integral, we conclude that

J =
1

4π

∫ λ0s/η
2

0

(es − 1)

s
ds− 1

4π
log r +

1

4π

[
log(

√
λ0s)− 2 log η + log 2

]
+ o(1) , as r → 0+ . (C.10)

Then, we let r → 0 in (C.5) while using (C.10) together with the well-known asymptotics Y0(z) ∼ 2
π [log z + γe − log 2]

as z → 0+ and
∫ π

0
sin
(√
λ0sr sin t

)
dt = O(r) as r → 0. This yields that Fsing(r) = −(2π)−1 log r + Freg + o(1) as

r → 0, where

Freg =
1

4π
(log 4− γe − 2 log η) +

1

4π

∫ λ0s/η
2

0

(es − 1)

s
ds . (C.11)

This result for Freg agrees with that in (3.11b), while the exact result for Fsing(r) in (C.5) provides an alternative to

that in (3.11c).
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