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Abstract

This project presents a mathematical framework for identifying partially permeable

biological boundaries, and estimating the rate of absorption of diffusing objects at

such a boundary based on limited experimental data. We used partial differential

equations (PDEs) to derive probability distribution functions for finding a particle

performing Brownian motion in a region. These distribution functions can be fit

to data to infer the existence of a boundary. We also used the probability distri-

bution functions together with maximum likelihood estimation to estimate the rate

of absorption of objects at the boundaries, based on simulated data. Furthermore,

we consider a switching boundary and provide a technique for approximating the

boundary with a partially permeable boundary.
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Preface

This thesis is original, unpublished, independent work by the author, S. A. Iyani-

wura under the supervision of Professor Daniel Coombs.
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Chapter 1

Introduction

1.1 Biological boundaries
Biological boundaries are barriers that separate a medium into different regions in

the sense that a substance crossing from one region of the medium to another may

experience some differences in its environment, and as a result react differently.

In cell biology, it is known that proteins such as receptors are constantly diffusing

on the cell surface. However, it is sometimes observed in experiments that some

receptors experience restricted motion which leads to the speculation that there is

a barrier preventing the free diffusion of these molecules. These barriers can either

be formed by some other molecules diffusing on the cell surface, or by molecules

that are confined to some region of the cell surface. Identifying these boundaries

in experimental data is important because it will give us a profound understanding

of the motion of the molecules involved. However, this may be challenging due

to the size and quantity of the molecules, and the type of motion they undergo.

Despite the importance of identifying these boundaries, not much has been done in

developing mathematical techniques for accomplishing this task.

In this project, we present a mathematical framework for identifying partially

permeable biological boundaries, and estimating the rate of absorption of diffusing

objects at such a boundary based on limited experimental data. This technique is

based on deriving a probability distribution function for finding a diffusing particle

in a region at some specified time, and fitting the distribution function to data in
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order to infer the existence of a boundary. The derived distribution function is also

used together with maximum likelihood estimation to estimate the rate of absorp-

tion on the boundary. In addition, we looked at switching boundaries and present a

technique for approximating the boundaries with partially permeable boundaries.

1.2 Definition of terms
Below are brief definitions of some of the biological terms used in this thesis.

1.2.1 Single Particle Tracking (SPT)

Single Particle Tracking (SPT) is a technique used to study the motion of an ob-

ject in a medium [12]. This technique involves labelling the particle of interest

with fluorescent optical labels. The sample containing this particle is placed under

the microscope where it is excited using a laser light. When the fluorophores are

excited, several pictures of the sample are taken over a period of time, and each

picture frame is analyzed to obtain the (x,y) coordinates of the particle of interest

at a particular time. These coordinates are then put together in order to create the

trajectory of motion of the particle [9]. The tracks from SPT can be analyzed to

determine the type of motion, and also heterogeneity in the motion of the particle,

which gives information about the particle’s interaction with its surrounding. Fig-

ure 1.1 shows an example of a trajectory from single particle tracking experiment.

1.2.2 Macrophage

A macrophage is a type of white blood cell that uses a process called phagocy-

tosis to engulf and digest cellular debris, cancer cells, pathogens, and any other

foreign substance that does not have the kind of protein specific of healthy cells

on its surface [16]. Macrophages also help in regulating immune responses and

participate in the development of inflammation by producing chemical substances

such as enzymes, complement proteins, and interleukin-1, among others [16].
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Figure 1.1: An example of a trajectory from single particle tracking experi-
ment.

1.2.3 CD45

CD45 is a transmembrane protein tyrosine phosphatase that is abundantly expressed

on the surface of various types of blood cells, including macrophages [11]. It plays

an important role in the functioning of these cells, and can act as both positive and

negative regulator of cellular signals [13].

1.2.4 Immunoglobulin G (IgG)

Immunoglobulin G is the most abundant type of antibody found in all body fluids

[14]. It is produced and released by plasma B cells, and protects the body against

bacterial, viral, and fungi infections by binding to the pathogens. An IgG molecule

has a protein complex that is made up of four peptide-chains, comprising of two

identical heavy chains and two identical light chains arranged in a Y-shape, and

has two binding sites [14].

1.3 Motivation
This project is motivated by a Single Particle Tracking (SPT) experiment involving

the tracking of the membrane phosphatase CD45 on macrophages. The experi-
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mental set-up involves seeding macrophages that have CD45 molecules on their

cell surface labelled with quantum dots on a coverslip. The coverslip is patterned

with Immunoglobulin G (IgG), and the pattern consists of 2µm diameter circles

with centres separated by 6µm, arranged in a regular 2D array as shown in Figure

1.2.

Figure 1.2: An illustration of the patterned coverslip. The circular regions
are 2µm in diameter and contain the IgG (in blue). These regions are
separated by a distance of 6µm from the centre of each region.

The macrophages are allowed to settle on the patterned coverslip, and when

contact is formed between the macrophages and the IgG-patterned surface, the

quantum dot-labelled CD45 molecules on the cell membrane are tracked for 10

seconds at a frequency of 30 Hz (hertz). During this experiment, it was observed

that the contact of the macrophages with the immobile IgG creates a “zone of CD45

exclusion”. While some of the phosphatase molecules that fall outside this zone

appear to diffuse freely but bounce off the edge of the zone, those that fall inside

the zone are observed to have restricted motion.
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(a) A diffusing molecule bouncing off the
exclusion zone.

(b) A diffusing molecule absorbed into the
exclusion zone.

Figure 1.3: A sketch of one of the circular patterns on the coverslip and a
diffusing molecule.

Figure 1.3a shows a trajectory bouncing off the boundary of an exclusion zone

on the coverslip, while Figure 1.3b shows a trajectory that is absorbed into this

zone. The apparent bouncing of phosphatase molecules from the zone of exclusion

was observed from three different trajectories. However, there is not enough evi-

dence to conclude whether the observations represent an anisotropic barrier exclu-

sion effect on the trajectories, or the molecules are undergoing isotropic Brownian

motion. In other words, the question is: Are the trajectories actually bouncing off

the “zone of CD45 exclusion”or we are observing simple Brownian motion?

We approach this problem from the point of view of a particle performing

Brownian motion in a domain, and derive the probability distribution function

for finding the particle in some region after a specified time, considering differ-

ent scenarios and geometries. Several previous works have studied the motion of

a Brownian particle in a domain, and have derived probability distribution func-

tions for the particle’s position after some specified time [3], [5], [6], [7], and [10].

Chandrasekhar [3] derived the probability density function for finding a particle

performing random walk at a point after taking some specified number of steps,

from the point of view of a Bernoulli distribution. He considered the case of an

unbounded domain, and a bounded domain with a reflecting boundary and an ab-

sorbing boundary. In this project, we derive probability distribution functions for a
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particle performing Brownian motion in an unbounded domain, in a bounded do-

main with an absorbing boundary and a partially absorbing boundary using partial

differential equations.

1.4 Brief description of chapters

Chapter two

In chapter two, we derive the diffusion equation as a continuous limit of a random

walk, and then used the derived equation to set-up our mathematical problem. We

also present a brief description of a partially absorbing boundary, Robin boundary

condition, and maximum likelihood estimation.

Chapter three

In this chapter, we derive probability distribution functions for finding a particle

performing Brownian motion in a region of an unbounded and a bounded domain.

For the unbounded domain, we consider a semi-infinite rectangular region and a

disk-shaped region, both with ‘imaginary’ boundaries, while for the bounded do-

main, we consider the right-half plane with an absorbing boundary at x = 0, and a

disk-shaped region, also with an absorbing boundary. These probability distribu-

tion functions can be fit to data to infer the existence of a boundary.

Chapter four

In chapter four, we derive probability distribution functions for finding a particle

performing Brownian motion in a domain that is bounded by a partially absorb-

ing boundary. For this case, we also consider the right-half plane with a partially

absorbing boundary at x = 0 and a disk-shaped region. We use these probability

distribution functions together with maximum likelihood estimation to estimate the

rate of absorption of particles on the partially absorbing boundaries. In addition,

we calculate the mean and variance of first passage time for the particle performing

Brownian motion to exit the regions.
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Chapter five

In this chapter, we consider scenarios where the boundary of the domain in which

the particle is performing Brownian motion switches from one boundary type to

another over time. First, we consider the case where the boundary fluctuates be-

tween a perfectly reflecting boundary and different partially absorbing boundaries,

and then use mean field approximation to replace the fluctuating boundary with a

partially absorbing boundary. We also consider a case where the boundary switches

between two specific boundary types, and provide a technique for approximating

the switching boundary with a partially absorbing boundary.

Our goal in this project is to develop a mathematical technique for identifying

partially permeable biological boundaries, and to estimate the rate of absorption

on such boundaries. We also want to present a technique for approximating a

switching boundary with a partially permeable boundary.

7



Chapter 2

Mathematical Problem
Formulation

In this chapter, we derive the diffusion equation as a continuous limit of a random

walk, and use the equation to formulate our mathematical problem. In addition,

we present a brief introduction to a partially absorbing boundary, Robin boundary

condition, and maximum likelihood estimation.

2.1 Random walk and the diffusion equation
A random walk is a path consisting of a succession of independent random steps.

For example, the path traced by a molecule as it travels in a liquid or gas, the search

path of a foraging animal, and the price of a fluctuating stock can all be modeled

as random walks, although in reality, they may not be random (cf. [18]). Here, we

shall show the relationship between a random walk and the diffusion equation.

Consider a particle performing random walk on a one dimensional lattice. Sup-

pose the rule of its movement is that at each time step of size ∆t, the particle can

either jump to the left or right a distance of ∆x with equal probability, 1/2.

Let P(x, t) be the probability that the particle is at position x at time t. Then

according to the rule of movement of the particle, there are only two possibilities

that the particle reaches position x at time t +∆t: The particle was at x−∆x at time

t and jumped to the right; or the particle was at x+∆x at time t and jumped to the

8



left as shown in Figure 2.1.

Figure 2.1: A random walk on one dimensional lattice. This figure shows the
different possibilities of having a particle at position x at time t +∆t.
The particle can either be at position x−∆x at time t and take a step
forward or at position x+∆x at time t and take a step backward.

Since the next movement of the particle is independent of its present location,

the probability that the particle is at position x at time t +∆t given that it was at

position x−∆x at time t is 1
2 P(x−∆x, t), while the probability that the particle is at

position x at time t +∆t given that it was at x+∆x at time t is 1
2 P(x+∆x, t). Thus,

the probability that the particle is at position x at time t +∆t is

P(x, t +∆t) =
1
2

P(x−∆x, t)+
1
2

P(x+∆x, t) . (2.1)

Let us Taylor expand each term in this equation:

P(x, t +∆t) = P(x, t)+
∂

∂ t
P(x, t)∆t +O(∆t)2 , (2.2)

P(x±∆x, t) = P(x, t)± ∂

∂x
P(x, t)∆x+

1
2

∂ 2

∂x2 P(x, t)(∆x)2 +O(∆x)3 . (2.3)

Substituting the Taylor expansions into Equation (2.1) and simplifying, we have

∂

∂ t
P(x, t)∆t +O(∆t)2 =

1
2

∂ 2

∂x2 P(x, t)(∆x)2 +O(∆x)3 .

Dividing through by ∆t gives

∂

∂ t
P(x, t)+O(∆t) =

(∆x)2

2∆t
∂ 2

∂x2 P(x, t)+O

(
(∆x)3

∆t

)
.
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Next, we take the limit ∆x −→ 0, ∆t −→ 0 in such a way that lim (∆x)2

2∆t = D exits,

that is, D is finite: This special limit is called the diffusion limit. Thus, we have the

diffusion equation

∂

∂ t
P(x, t) = D

∂ 2

∂x2 P(x, t) . (2.4)

In n dimensions, similar calculations yield

∂

∂ t
P(−→x , t) = ∇

2P(−→x , t) , (2.5)

where −→x ≡ (x1, . . . ,xn) is an n dimensional vector, D is the diffusion coefficient,

and ∇2 ≡
(

∂ 2

∂x2
1
+ · · ·+ ∂ 2

∂x2
n

)
is the Laplace operator.

This shows that the diffusion equation is a continuous limit of a random walk

process. Throughout this project, we shall use the diffusion equation in Equation

(2.5) to model Brownian motion.

2.2 Mathematical formulation
Consider a particle performing Brownian motion in a two dimensional domain Ω.

Let P(−→x , t|−→x 0, t0) be the probability that the particle is at position −→x at time t

given that it started at point −→x 0 at time t0. Then P satisfies

∂P
∂ t

= D∇
2P , −→x ∈Ω, t > t0 ,

P(−→x , t0|−→x 0, t0) = δ (−→x −−→x 0) ,
−→x ≡ (x,y) .

(2.6)

If we let Γ(t|−→x 0, t0) be the probability that the particle is in a region R at time

t given that it started at point −→x 0 ∈Ω at time t0, then

Γ(t|−→x 0, t0) =
∫

R
P(−→x , t|−→x 0, t0) dA . (2.7)

We shall solve the problem in Equation (2.6) in different geometries and with

different types of boundary conditions.
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2.3 Partially absorbing boundary and Robin boundary
condition

A boundary is said to be partially absorbing if when a particle hits it, the particle

is either reflected back into the domain or is absorbed by the boundary. Erban

and Chapman [4] showed that a partially absorbing boundary can be accurately

modelled using the Robin boundary condition;

D
∂

∂n
P(−→x , t) = κP(−→x , t) , (2.8)

where κ is the rate of absorption on the boundary, D is the diffusion coefficient of

the particle, and ∂

∂n is the outward normal derivative on the boundary.

Note that when κ = 0 in Equation (2.8), the boundary condition corresponds

to the perfectly reflecting boundary condition, ∂

∂n P(−→x , t) = 0, while as κ tends to

infinity, it becomes the perfectly absorbing boundary condition, that is, P(−→x , t) =

0. This shows that the Robin boundary condition is a weighted average of the

reflecting and absorbing boundary conditions.

In the context of particle-based simulation, Erban and Chapman [4] went fur-

ther to develop a relation between the probability of absorption upon hitting the

boundary for a particle performing Brownian motion in a bounded domain and the

rate of absorption in the Robin boundary condition (2.8). Their relation is given as

κ = 2P
√

D
π ∆t

, (2.9)

where P is the probability of absorption on the boundary, κ is the rate of absorption

in the Robin boundary condition, and ∆t is the time step used in the simulation.

Steven Andrews [1] also presented empirical relations between the Robin ab-

sorption rate and the probability of absorption on the boundary, and the relations

are

κ
′ =

1√
2π

P+0.24761P2 +0.00616P3 +0.20384P4 , (2.10)

P= κ
′√2π−3.33321κ

′2 +3.35669κ
′3−1.52092κ

′4 , (2.11)
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where κ ′ = κ

√
∆t
2D .

Unlike the relation presented by Erban and Chapman (in Equation (2.9)) which

was derived analytically, Andrews relations were derived by fitting polynomials to

simulated data [1].

2.4 Maximum Likelihood Estimation
A likelihood function is defined as a function of the parameters of a model given

some observations or data [15]. Let P(X;θ) be the probability of having the set of

observations X given a set of parameters θ , then the likelihood function L (θ |X),

of having the parameter values θ given the outcomes X is given as [15]

L (θ |X)∼ P(X;θ) .

Maximum Likelihood Estimation (MLE) is a method of estimating the parameters

of a model based on some observations or data. In order words, for a fixed data

and a corresponding model, MLE selects the set of values of the model parameters

that maximizes the likelihood function.
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Chapter 3

Identifying Biological Boundaries

In this chapter, we consider a particle performing Brownian motion in an un-

bounded domain and derive the probability distribution function for finding the

particle at a position after a specified time. Then, we assume that there is a region of

the unbounded domain that is bounded by an ‘imaginary’ boundary, and derive the

probability distribution function for finding the particle in this region. The bound-

ary is called imaginary because the diffusing particle is assumed to cross it from

both directions without any restriction. In other words, the boundary does not have

any effect on the motion of the particle. For the region bounded by the imaginary

boundary, we consider a semi-infinite rectangular region and a disk-shaped region.

In addition, we derive probability distribution functions for a particle performing

Brownian motion in domains that are bounded by perfectly absorbing boundaries.

3.1 Unbounded domain: Imaginary boundary
Consider a particle performing Brownian motion in an unbounded two-dimensional

domain as show in Figure 3.4. If we let Ω be the Cartesian plane, the probability

that the particle is at position−→x at time t given that it started at position−→x 0 at time

t = 0, P(−→x , t|−→x 0,0) satisfies

∂P
∂ t

= D∇
2P , −∞ < x,y < ∞, t > 0 ,

P(−→x ,0) = δ (−→x −−→x 0) .

(3.1)

13



Figure 3.1: A particle performing Brownian motion in an unbounded two-
dimensional domain.

We define the Fourier Transform (F.T.) of P(x,y, t) as

ℑ(k1,k2, t) =
1

(2π)2

∫
∞

−∞

∫
∞

−∞

P(x,y, t)e−i(k1x+k2y) dxdy , (3.2)

and the inverse F.T. as

P(x,y, t) =
∫

∞

−∞

∫
∞

−∞

ℑ(k1,k2, t)ei(k1x+k2y) dk1 dk2 . (3.3)

Taking the F.T. of the PDE in Equation (3.1), we have

d
dt

ℑ(k1,k2, t) =−D(k2
1 + k2

2)ℑ(k1,k2, t) .

Solving this Ordinary Differential Equation (ODE) gives

ℑ(k1,k2, t) = Ae−D(k2
1 +k2

2)t , (3.4)
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where A is a constant.

Taking the F.T. of the initial condition in Equation (3.1), we have

ℑ(k1,k2,0) =
1

(2π)2 e−i(k1x0 +k2y0) . (3.5)

Applying this initial condition to the solution in Equation (3.4) gives,

ℑ(k1,k2, t) =
1

(2π)2 e−D(k2
1 +k2

2)t−i(k1x0 +k2y0) . (3.6)

Let us take the inverse F.T. of Equation (3.6) using Equation (3.3).

P(x,y, t) =
∫

∞

−∞

∫
∞

−∞

1
(2π)2 e−D(k2

1 +k2
2)t−i(k1x0 +k2y0) ei(k1x+k2y) dk1 dk2 .

Evaluating the integrals and simplifying gives

P(x,y, t|x0,y0,0) =
1

4πDt
exp
(
− 1

4Dt
[(x− x0)

2 + (y− y0)
2]

)
. (3.7)

This is the probability distribution function for finding a particle performing Brow-

nian motion in an unbounded two-dimensional domain at position (x,y) at time t

given that it started at position (x0,y0) at time t = 0. It is important to point out

that this equation is the free space Green’s function for the diffusion equation in

two-dimensions.

Suppose that there is an imaginary boundary at x = a such that the Cartesian

plane is divided into two regions as shown in Figure 3.2. We are interested in de-

riving the probability distribution functions for finding the particle in these regions

at time t. Specifically, if we let Ω1 = {(x,y)|a≤ x < ∞ ,−∞ < y < ∞}, we want

to find the probability distribution function for finding the particle in Ω1 at time t

given that the particle started the Brownian motion at (x0,y0) ∈ Ω1 at time t = 0.

To get this distribution function, we need to integrate Equation (3.7) over Ω1. That

is,

Γ(t|x0) =
∫

Ω1

P(x,y, t|x0,y0,0) dA =
∫

∞

−∞

∫
∞

a
P(x,y, t|x0,y0,0) dxdy .
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Figure 3.2: A particle performing Brownian motion in the Cartesian plane
with an imaginary boundary at {(x,y)|x = a,−∞ < y < ∞}.

Substituting P(x,y, t) as given in Equation (3.7) into this equation, we have

Γ(t|x0) =
1

4πDt

∫
∞

−∞

∫
∞

a
exp
(
− 1

4Dt
[(x− x0)

2 + (y− y0)
2]

)
dxdy .

Evaluating the integrals gives the probability distribution for finding the particle in

Ω1 over time,

Γ(t|x0) =
1
2

erfc
(

a− x0√
4Dt

)
, (3.8)

where erfc(x)=1 - erf(x) is the complementary error function.

Figure 3.3 shows the plots of the probability distribution function in Equation

(3.8). We observe from this figure that for each value of a, the probability of

finding the particle in Ω1 starts from one and decreases as time goes on. This is

because the particle started the Brownian motion in Ω1 and as time goes on, the

chances of it crossing the imaginary boundary increases which leads to an increase

in the probability of finding the particle in Ω \Ω1 as seen in Figure 3.3b. We

also notice from the plots in this figure that the probability of finding the particle in

each region after a specific time depends on the position of the imaginary boundary.
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(a) Probability of finding the particle
in Ω1.

(b) Probability of finding the particle
in Ω\Ω1.

Figure 3.3: The probability of finding a diffusing particle in one of the two
half-planes of the Cartesian plane at time t, given that it started a Brow-
nian motion at the point x0 = 5, with diffusion coefficient D = 0.1, and
an imaginary boundary at x = a.

Since the particle can cross the boundary from both directions without restriction,

the probability of finding the particle in either of the two regions separated by the

boundary converges to 0.5 after a long time. This can be seen by taking the limit

of the probability distribution function in Equation (3.8) as t tends to infinity as

shown below,

lim
t−→∞

Γ(t|x0) = lim
t−→∞

1
2

erfc
(

a− x0√
4Dt

)
=

1
2
.

Now, suppose the imaginary boundary bounds a disk-shaped region as shown

in Figure 3.4. Then we need to integrate Equation (3.7) over the disk-shaped region

to get the probability distribution function for finding the particle in this region at

time t.

Before integrating, let us write the function in polar coordinates. From Equa-

tion (3.7), we have

P(−→x , t|−→x 0,0) =
1

4πDt
exp
(
−|
−→x −−→x 0|2

4Dt

)
. (3.9)

Let |−→x 0| = r0, and |−→x | = r as shown in Figure 3.5. Using the cosine rule, the
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Figure 3.4: A particle performing Brownian motion in an unbounded domain,
with an imaginary boundary bounding a disk-shaped region.

Figure 3.5: A sketch of the disk-shaped region.

probability distribution function in Equation (3.9) becomes

P(r,θ , t) =
1

4πDt
exp
(
− 1

4Dt
(r2 + r2

0−2rr0 cos(θ0−θ))

)
. (3.10)

Next, we integrate P(r,θ , t) over the disk-shaped region to get the probability dis-
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tribution function for finding the particle in the region at time t. That is,

Γ(t|r0) =
1

4πDt

∫ 2π

0

∫ a

0
exp
(
− 1

4Dt
(r2 + r2

0−2rr0 cos(θ0−θ))

)
r dr dθ ,

Γ(t|r0) =
1

4πDt
e

(
− r2

0
4Dt

) ∫ a

0
r e
(
− r2

4Dt

)[∫ 2π

0
exp
(

1
4Dt

(2rr0 cos(θ0−θ))

)
dθ

]
dr.

But ∫ 2π

0
exp
(

1
2Dt

(rr0 cos(θ0−θ))

)
dθ = 2π I0

( r0r
2Dt

)
,

where I0(z) is the modified Bessel function of the first kind of order zero.

Therefore,

Γ(t|r0) =
1

4πDt
exp
(
−

r2
0

4Dt

)[
2π

∫ a

0
r exp

(
− r2

4Dt

)
I0

( r0r
2Dt

)
dr
]
.

Evaluating the integral in this equation, we have

Γ(t|r0) =
1

4πDt
exp
(
−

r2
0

4Dt

)[
4πDt exp

(
r2

0
4Dt

) (
1−Q1

(
r0√
2Dt

,
a√
2Dt

))]
.

Simplifying, we have the probability distribution function for finding the particle

in the disk-shaped region at time t given that it start at a distance r0 away from the

center of the region,

Γ(t|r0) = 1−Q1

(
r0√
2Dt

,
a√
2Dt

)
, (3.11)

where Q1 is the Marcum Q-function of order one.

The Marcum Q-function of order M QM is defined as

QM(a,b) =
∫

∞

b
x
( x

a

)M−1
exp
(
−x2 +a2

2

)
IM−1 (ax) dx , (3.12)

where IM−1 is the modified Bessel function of the first kind of order M−1 [17].

Figure 3.6 shows the plots of the probability distribution function in Equation

(3.11). In this figure, we fixed the initial position of the particle r0 = 5, and varied
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(a) Probability of finding the particle
inside the disk-shaped region.

(b) Probability of finding the particle outside
the disk-shaped region.

Figure 3.6: The probability of finding a particle performing Brownian motion
inside a disk-shaped region of radius a with an imaginary boundary at
time t, given that it started at a distance r0 = 5 away from the center of
the region and with diffusion coefficient D = 0.1.

the radius of the region. We notice from these plots that as the radius of the disk-

shaped region increases, the probability that the particle is still in the region after

a specific time increases. This shows that the probability of finding the particle in

the region at some time t > 0 depends on the radius of the region. This is because

the time required for the particle to reach the boundary increases as the region

gets bigger. Similar to the plots of the distribution function in Equation (3.8), we

observe that the probability of finding the particle inside the disk-shaped region

starts from one and decreases with respect to time. The reason for this is that the

particle started its motion inside the region and as time goes on, the chances of it

crossing the imaginary boundary increases. In addition, the probability of finding

the particle inside the disk-shaped region tends to zero after a long time. This can

early be seen by taking the limit as t tends to infinity of the probability distribution

function in Equation (3.11).

3.2 Bounded domain: Perfectly absorbing boundary
In this section, we derive probability distribution functions for a particle perform-

ing Brownian motion in a bounded domain with a perfectly absorbing boundary.
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Since the boundary is perfectly absorbing, the diffusing particle vanishes immedi-

ately when it hits the boundary. We again consider two different geometries, the

right half-plane (rectangular coordinates) and a disk-shaped region (polar coordi-

nates).

3.2.1 The half-plane problem

Suppose we have a particle performing Brownian motion in the right half-plane

with a perfectly absorbing boundary at x = 0 as shown in Figure 3.7. Let us define

Ω = {(x,y) |0≤ x < ∞, −∞ < y < ∞}. We impose a Dirichlet (absorbing) bound-

ary condition on the boundary at x = 0 for the problem in Equation (2.6) to get the

problem for the probability of finding the particle at a point −→x at time t given that

it started at −→x 0 at time t = 0, P(−→x , t|−→x 0);

Figure 3.7: A particle performing Brownian motion in the right half-plane
with an absorbing boundary at x = 0.
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∂P
∂ t

= D∇
2P , −→x ∈Ω , t > 0 ,

P(−→x ,0) = δ (−→x −−→x 0) ,

P = 0 , x = 0 ,−∞ < y < ∞ ,

P−→ 0 , as x−→ ∞ .

(3.13)

We shall rewrite this problem using the method of images which involves extending

the domain Ω by adding its mirror image with respect to a symmetry hyperplane.

Then we place a mirror image of the initial condition in the extended domain in

such a way that the boundary condition P = 0 is satisfied at x = 0. The original

Figure 3.8: An illustration of the idea of method of images.

initial condition δ (x− x0,y− y0) is at (x0,y0), while the image initial condition

δ (x+ x0,y− y0) is placed at (−x0,y0) as shown in Figure 3.8. So doing, the new
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problem is

∂P
∂ t

= D∇
2P, −∞ < x,y < ∞, t > 0,

P =0, on x = 0, −∞ < y < ∞,

P =δ (x− x0,y− y0)−δ (x+ x0,y− y0), at t = 0 .

(3.14)

We observe that our new initial condition is the difference of the actual and image

initial conditions. This is required in order to satisfy the boundary condition P = 0

at x = 0.

Define the Fourier Transform (F.T.) of P(x,y, t) as,

P̂(k1,k2, t) =
1

(2π)2

∫
∞

−∞

∫
∞

−∞

P(x,y, t)e−i(k1x+k2y) dxdy , (3.15)

and the inverse F.T. as

P(x,y, t) =
∫

∞

−∞

∫
∞

−∞

P̂(k1,k2, t)ei(k1x+k2y) dk1 dk2 . (3.16)

Taking the F.T. of the PDE in Equation (3.14),

1
(2π)2

∫
∞

−∞

∫
∞

−∞

Pt(x,y, t)e−i(k1x+k2y) dxdy =

D
1

(2π)2

∫
∞

−∞

∫
∞

−∞

∇
2P(x,y, t)e−i(k1x+k2y) dxdy ,

P̂(k1,k2, t) =−D(k2
1 + k2

2) P̂(k1,k2, t) .

Solving this equation, we have

P̂(k1,k2, t) = Ae−D(k2
1 +k2

2)t , (3.17)

where A is a constant.

Taking the F.T. of the initial condition in Equation (3.14), we have

P̂(k1,k2,0) =
1

(2π)2

(
e−i(k1x0 +k2y0)− e−i(k1x0−k2y0)

)
.
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Applying this initial condition to the solution in Equation (3.17), we obtain

P̂(k1,k2,σ) =
1

(2π)2

(
e−i(k1x0 +k2y0)− e−i(k1x0−k2y0)

)
e−D(k2

1 +k2
2)t .

Now, let us take the inverse F.T. of this equation using Equation (3.16),

P(x,y, t) =
1

(2π)2

∫
∞

−∞

∫
∞

−∞

e−D(k2
1 +k2

2)t+ i[k1(x−x0)+k2(y−y0)] dk1 dk2

+
1

(2π)2

∫
∞

−∞

∫
∞

−∞

e−D(k2
1 +k2

2)t+ i[k1(x+x0)+k2(y−y0)] dk1 dk2 .

Evaluating these integrals using the fact that

∫
∞

−∞

e−Dk2
1t+ik(z−x) dk =

(
π

Dt

)1/2
exp
(
(z− x)2

4Dt

)
,

we obtain the probability distribution function for finding a particle performing

Brownian motion in the right half-plane at position −→x at time t given that it started

from the point −→x 0 at t = 0, and that there is an absorbing boundary at x = 0,

P(−→x , t|−→x 0) =
1

4Dπt

[
exp
(
− [(x− x0)

2 + (y− y0)
2]

4Dt

)
−exp

(
− [(x+ x0)

2 + (y− y0)
2]

4Dt

) ]
, x > 0 .

(3.18)

To get the probability distribution function for finding the particle in the right half-

plane at time t, we need to integrate P(−→x , t|−→x 0) over the region. That is,

Γ(t|x0) =
∫

∞

−∞

∫
∞

0
P(x,y, t|x0,y0) dxdy .

Substituting P(x,y, t|x0,y0) as given in Equation (3.18) into this equation,

Γ(t|x0) =
1

4Dπt

∫
∞

−∞

∫
∞

0

[
exp
(
− [(x− x0)

2 + (y− y0)
2]

4Dt

)
−exp

(
− [(x+ x0)

2 + (y− y0)
2]

4Dt

) ]
dxdy .
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Evaluating these integrals, we obtain

Γ(t|x0) =
1
2

[
erfc

(
− x0√

4Dt

)
− erfc

(
x0√
4Dt

)]
. (3.19)

Thus, this is the probability distribution function for finding the particle in the right

half-plane at time t, while 1−Γ(t|x0) is the probability that the particle has been

absorbed by the boundary at time t.

(a) Probability of finding the particle
in the right half-plane at time t.

(b) Probability that the particle has been ab-
sorbed by the boundary at time t.

Figure 3.9: The probability of finding a particle performing a Brownian mo-
tion in the right-half plane at time t given that it started at the point x0,
with D = 0.1, and that there is a perfectly absorbing boundary at x = 0.

We notice from the plots of the probability distribution function in Equation

(3.19) shown in Figure 3.9 that the probability that the diffusing particle is still in

the right half-plane at time t depends on the initial position of the particle. As the

particle starts farther away from the boundary, the time required for the particle

to reach the boundary increases, therefore, the probability of finding the particle

in the region also increases. We also observe from this figure that the probability

of finding the particle in the right half-plane at the beginning (t = 0) is 1, and it

decreases with respect to an increase in time. This is because the particle started

its motion in the right half-plane and as time goes on, the chances of it getting

absorbed by the boundary increases. After a long time, the probability that the

particle is still in the right half-plane tends to zero. This is logical because we
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would expect the particle to have been absorbed by the boundary after a long time

since P tends to zero as x tends to infinity. This can easily be seen by taking the

limit of the probability distribution function in Equation (3.19) as t tends to infinity.

3.2.2 The disk problem

Suppose the particle performing Brownian motion is in a disk-shaped domain of ra-

dius a, with a perfectly absorbing boundary at r = a as shown in Figure 3.10. Let Ω

Figure 3.10: A particle performing Brownian motion in a disk-shaped region
with a perfectly absorbing boundary.

be the interior of the disk-shaped region, that is, Ω= {(r,θ) |0 < r ≤ a,0≤ θ ≤ 2π}.
Then the probability that the particle is at position −→x ∈ Ω at time t given that it

started at point −→x 0 ∈Ω at time t = 0 satisfies

∂P
∂ t

= D∇
2P , −→x = (r,θ) ∈Ω, t > 0 ,

P(−→x ,0) = δ (−→x −−→x 0) ,

P = 0 , on r = a, 0≤ θ ≤ 2π .

(3.20)

We shall solve this problem using Green’s function and the method of images
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for a disk. First, we rewrite the problem by writing the delta function in the initial

condition as a forcing in the PDE, that is,

∂P
∂ t

=D∇
2P+ δ (−→x −−→x 0)δ (t), −→x ∈Ω , t > 0,

P = 0, on ∂Ω ,

P≡ 0, at t = 0 .

(3.21)

Let G f be the free space Green’s function for the diffusion equation which satisfies

∂G f

∂ t
=D∇

2G f + δ (−→x −−→x 0)δ (t) , −→x ∈Ω , t > 0,

G f ≡ 0, at t = 0 .

Then from Equation (3.9), we have that the free space Green’s function is

G f =
1

4πDt
exp
(
−|
−→x −−→x 0|2

4Dt

)
. (3.22)

The idea of the method of images is to find a harmonic function H which

satisfies the PDE in Equation (3.20), such that P = G f +H, with H = −G f on

∂Ω.

Let r = |−→x | , r0 = |−→x0 | , r1 = |−→x −−→x0 | , r2 = |−→x0−
−→
ζ | as shown in Figure 3.11.

Then in polar coordinates, Equation (3.22) becomes

G f =
1

4πDt
exp
(
− r2

1
4Dt

)
. (3.23)

We know that r2 = r1
(a

r

)
whenever r0 = a. Therefore, we choose the harmonic

function H to be

H=
1

4πDt
exp
(
−Cr2

2
4Dt

)
,

where C is a constant to be determined.
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Figure 3.11: A sketch of the method of images for a disk.

Now set P = G f +H and we achieve

P =
1

4πDt

[
exp
(
− r2

1
4Dt

)
− exp

(
−Cr2

2
4Dt

)]
. (3.24)

Next, we need to find the constant C so that P satisfies the boundary condition.

Using the fact that when r0 = a, r2 = r1
(a

r

)
and the boundary condition P = 0, we

obtained C = r2

a2 , and so

P =
1

4πDt

[
exp
(
− r2

1
4Dt

)
− exp

(
− r2r2

2
4a2Dt

)]
. (3.25)

But from Figure 3.11, using the cosine rule, we have

r2
1 = r2 + r2

0−2rr0 cos(θ0−θ) ,

r2
2 =

1
r2 (a

4 + r2r2
0−2a2rr0 cos(θ0−θ)) .

(3.26)
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Therefore,

P(r,θ , t) =
1

4πDt

[
exp
(
− 1

4Dt
(r2 + r2

0−2rr0 cos(θ0−θ))

)
−exp

(
− 1

4a2Dt
(a4 + r2r2

0−2a2rr0 cos(θ0−θ))

)]
.

(3.27)

This is the probability distribution function for finding a particle performing Brow-

nian motion in a disk-shaped region of radius a, at a point (r,θ) inside the region,

given that it started at a point (r0,θ0) and that there is a perfectly absorbing bound-

ary at r = a. We need to integrate this function over the disk-shaped region to get

the probability distribution function of finding the particle inside the region at time

t. That is,

Γ(t|r0) =
∫

Ω

P(r,θ , t)d−→x =
∫ 2π

0

∫ a

0
P(r,θ , t) r dr dθ .

Substituting Equation (3.27) into this equation,

Γ(t|r0) =
1

4πDt

[∫ 2π

0

∫ a

0
exp
(
− 1

4Dt
(r2 + r2

0−2rr0 cos(θ0−θ))

)
r dr dθ∫ 2π

0

∫ a

0
exp
(
− 1

4a2Dt
(a4 + r2r2

0−2a2rr0 cos(θ0−θ))

)
r dr dθ

]
.

Evaluating these integrals using the same approach we used in the case of a disk-

shaped region with an imaginary boundary, we have

Γ(t|r0) =

(
1−Q1

(
r0√
2Dt

,
a√
2Dt

))
− exp

(
r2

0−a2

4Dt

)(
1−Q1

(
ar0√
2aDt

,
a√

2aDt

))
,

(3.28)

where Q1 is the Marcum Q-function of order one defined in Equation (3.12).

Remark 3.2.3. The disk problem for a partially absorbing boundary cannot be

solved by the method of images because we cannot find the constant C (in Equa-

tion (3.24)) for which P satisfies the Robin boundary condition. Although, other

methods such as separation of variables and the conformal mapping method can
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be used to solve the problem.

Equation (3.28) is the probability distribution function for finding a particle

performing Brownian motion in a disk-shaped region of radius a, given that it

started at a distance r0 away from the center of the region and that the region

has a perfectly absorbing boundary. We notice that the distribution function is

independent of θ . This shows that the probability of finding the particle in the

region is independent of the angle of rotation of the disk. Figure 3.12 shows the

plots of the distribution function in Equation (3.28). In this figure, we used a fixed

initial position for the particle and varied the radius of the region. As we would

expect, the probability of finding the particle in the disk-shaped region at time t = 0

is one since the particle started from inside the region. This probability decreases

over time because the chances of the particle getting absorbed on the boundary

increases as time goes on.

(a) Probability of finding the particle
inside the disk-shaped region.

(b) Probability that the particle has been ab-
sorbed by the boundary at time t.

Figure 3.12: The probability of finding a particle performing Brownian mo-
tion inside a disk-shaped of radius a at time t, given that it started at a
distance r0 = 5 away form the center of the region, with D = 0.1, and
that the region has a perfectly absorbing boundary.

We would also expect the probability of finding the particle inside the region

to converge to zero after a long time because the particle is assumed to vanish

when it hits the boundary (perfectly absorbing boundary), and the chances of the

particle hitting the boundary increases over time. However, the rate at which the

30



probability converges to zero depends largely on the surface area of the disk-shaped

region. This can be seen in Figure 3.12a.

So far, we have derived several probability distribution functions for finding a

particle performing Brownian motion in a region (that is, Equations (3.8), (3.11),

(3.19), and (3.28)). These distribution functions can be fit to data to enable one con-

clude whether or not an experimental particle of interest is experiencing a restricted

motion. To do this, we consider the appropriate probability distribution functions

that best model our experimental set-up and collect data such as the initial position

of the particle x0 (r0 for a disk-shaped region), final position of the particle, its

diffusion coefficient D, and final experimental time. These pieces of information

can be used in the probability distribution functions to get the distribution of prob-

ability for finding the particle in a region, which can then be used together with the

final position of the particle to determine whether or not the particle is experiencing

a restricted motion.

In the next chapter, we derive probability distribution functions for the case

of a partially absorbing boundary and use the distribution function together with

maximum likelihood estimation to estimate the rate of absorption on the boundary.
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Chapter 4

Partially Absorbing Boundary

In this chapter, we derive probability distribution functions for finding a parti-

cle performing Brownian motion in a bounded domain with a partially absorb-

ing boundary. We consider two different geometries: the right half-plane and a

disk-shaped region. These distribution functions are used together with maximum

likelihood estimation to estimate the rate of absorption on the boundary. In addi-

tion, we use the distribution functions to calculate the mean and variance of first

passage time for the particle to exit the regions.

4.1 Half-plane problem
Consider a particle performing Brownian motion in the right half-plane with a par-

tially absorbing boundary at x = 0. As illustrated in Figure 4.1, if the diffusing

particle hits the boundary, it is either absorbed by the boundary (in blue) with a

specified probability, or reflected back (in red) into the right half-plane.

Erban and Chapman [4] showed that the partially absorbing boundary is accu-

rately modelled by a Robin boundary condition. If we let Ω be the right half-plane,

that is, Ω = {(x,y)|0≤ x < ∞,−∞ < y < ∞}, then the probability of finding the

particle at position−→x ∈Ω at time t, given that it started at position−→x 0 ∈Ω at time
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Figure 4.1: A particle performing Brownian motion in the right half-plane
with a partially absorbing boundary at x = 0.

t = 0, P(−→x , t|−→x 0,0) satisfies

∂P
∂ t

= D∇
2P , −→x ∈Ω , t > 0 ,

P(−→x ,0) = δ (−→x −−→x 0) ,

D
∂P
∂x

= κP , x = 0, −∞ < y < ∞,

P−→ 0 , as x−→ ∞ ,

(4.1)

where κ is the rate of absorption on the boundary.

Let us rewrite this problem by placing the delta function in the initial condition

as a source function in the PDE,

∂P
∂ t

= D∇
2P+δ (x− x0,y− y0)δ (t), 0≤ x < ∞, −∞ < y < ∞, t > 0,

D∂nP−κP = 0, on x = 0, −∞ < y < ∞,

P≡ 0, at t = 0.

(4.2)
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Let P = G f + Ĝ, where G f is the free space Green’s for the diffusion equation, and

Ĝ is a function to be determined. Substituting P = G f + Ĝ into the PDE in problem

(4.2), we have

(G f + Ĝ)t = D∇
2(G f + Ĝ)+δ (x− x0,y− y0)δ (t) .

Rearranging,

∂G f

∂ t
−D∇

2G f =D∇
2Ĝ− ∂ Ĝ

∂ t
+δ (x− x0,y− y0)δ (t), .

Substituting P = G f + Ĝ into the Robin boundary condition in problem (4.2) gives

D∂nG f −κG f =−D∂nĜ+κĜ .

Therefore, problem (4.2) becomes

∂G f

∂ t
−D∇

2G f =D∇
2Ĝ− ∂ Ĝ

∂ t
+δ (x− x0,y− y0)δ (t), 0≤ x < ∞,

−∞ < y < ∞, t > 0,

D∂nG f−κG f =−D∂nĜ+κĜ, on x = 0, −∞ < y < ∞,

G f ≡ 0, at t = 0 .

(4.3)

Next, we split this problem into two new problems. The first problem is

∂G f

∂ t
−D∇

2G f = δ (x− x0,y− y0)δ (t), −∞ < x,y < ∞, t > 0,

G f ≡ 0, at t = 0 .

(4.4)

This is the problem for the free space Green’s function for the diffusion equation

and the solution is the Green’s function we derived earlier in Equation (3.7),

G f =
1

4πDt
exp
(
− 1

4Dt
[(x− x0)

2 + (y− y0)
2]

)
. (4.5)
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The second problem is

D∇
2Ĝ− ∂ Ĝ

∂ t
= 0, 0≤ x < ∞, −∞ < y < ∞, t > 0,

D∂nG f−κG f =−D∂nĜ+κĜ, on x = 0, −∞ < y < ∞, .

(4.6)

Here, we shall use the idea of the method of images to choose a solution to the

PDE in the problem which contains an unknown function called the source density

function (see page 478 of [19]). This solution together with the boundary condition

will be used to find the suitable source density function. We write

Ĝ =
1

4πDt
e−

1
4Dt [(x+x0)

2 +(y−y0)
2]+

1
4πDt

∫ −x0

−∞

γ(s)e−
1

4Dt [(x−s)2 +(y−y0)
2]ds , (4.7)

where γ(s) is the source density function, and it is assumed to decay fast enough

at infinity such that the integral converges and differentiation under the integral is

possible. In the Robin boundary condition D∂nG−κG = 0, if κ = 0, we have the

Neumann boundary condition, ∂nG = 0, and so we expect

Ĝ =
1

4πDt
exp
(
− 1

4Dt
[(x+ x0)

2 + (y− y0)
2]

)
.

So that

P(x,y, t|x0,y0) =
1

4πDt
exp
(
− 1

4Dt
[(x− x0)

2 + (y− y0)
2]

)
+

1
4πDt

exp
(
− 1

4Dt
[(x+ x0)

2 + (y− y0)
2]

)
,

(4.8)

which is the probability distribution function for finding the diffusing particle at

position (x,y) at time t when the boundary at x = 0 is perfectly reflecting. There-

fore, we want the source density function to be zero when κ = 0. To get this, we

need to find the appropriate γ(s) such that Ĝ satisfies the boundary condition in

Problem (4.6).

Substituting G f and Ĝ into the boundary condition in problem (4.6) and sim-
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plifying, we have

− 2κ

4πDt
e−

1
4Dt [x

2
0 +(y−y0)

2] =
κ

4πDt

∫ −x0

−∞

γ(s)e−
1

4Dt [s
2 +(y−y0)

2] ds

− 1
4πt

∫ −x0

−∞

γ(s)
∂

∂x

[
e−

1
4Dt [(x+s)2 +(y−y0)

2]
]∣∣∣

x=0
ds .

Multiplying through by 4πDt, and using the fact that ∂

∂x ≡ −
∂

∂ s on the boundary

(x = 0), we obtain

−2κ e−
1

4Dt [x
2
0 +(y−y0)

2] = κ

∫ −x0

−∞

γ(s)e−
1

4Dt [s
2 +(y−y0)

2] ds

+D
∫ −x0

−∞

γ(s)
∂

∂ s

[
e−

1
4Dt [s

2 +(y−y0)
2]
]

ds .

Using integration by parts for the second integral on the right hand side,

−2κ e−
1

4Dt [x
2
0 +(y−y0)

2] = κ

∫ −x0

−∞

γ(s)e−
1

4Dt [s
2 +(y−y0)

2] ds

+Dγ(−x0)e−
1

4Dt [x
2
0 +(y−y0)

2]

−D
∫ −x0

−∞

γ
′(s)e−

1
4Dt [s

2 +(y−y0)
2] ds ,

(
γ
′(s)≡ ∂γ(s)

∂ s

)
.

Simplifying and collecting the integrals together, we have

(2κ +Dγ(−x0))e−
1

4Dt [x
2
0 +(y−y0)

2] = (Dγ
′(s)−κ γ(s))

∫ −x0

−∞

e−
1

4Dt [s
2 +(y−y0)

2] ds .

We notice that for this to hold, we must have Dγ ′(s)−κ γ(s)= 0 and 2κ +Dγ(−x0)=

0, for s <−x0. Therefore, we have the initial value problem

Dγ
′(s)−κγ(s) = 0 , s <−x0 ,

Dγ(−x0) =−2κ .

Solving this initial value problem, we obtain γ(s) = −2κ

D exp
(

κ

D(x0 + s)
)
. Substi-

tuting for γ(s) in Equation (4.7) gives

Ĝ =
1

4πDt
e−

1
4Dσ

[(x+x0)
2 +(y−y0)

2]− 2κ

4πD2t

∫ −x0

−∞

e
κ

D (x0+s) e−
1

4Dt [(x−s)2 +(y−y0)
2] ds .
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Substituting G f and Ĝ into P = G f + Ĝ, we have

P(−→x , t) =
1

4πDt

[
e−

1
4Dt [(x−x0)

2 +(y−y0)
2]+ e−

1
4Dt [(x+x0)

2 +(y−y0)
2]
]

− κ

2πD2t

∫ −x0

−∞

e
κ

D (x0+s) e−
1

4Dt [(x−s)2 +(y−y0)
2] ds .

Evaluating the integral, we get

P(−→x , t) =
1

4πDt

[
e−

1
4Dt [(x−x0)

2 +(y−y0)
2]+ e−

1
4Dt [(x+x0)

2 +(y−y0)
2]
]

− κ

πD(x+ x0)+2πDtκ

(
e−

1
4Dt [(x+x0)

2 +(y−y0)
2]
)
.

(4.9)

This is the probability distribution function for finding a particle performing Brow-

nian motion in the right half-plane at position−→x at time t, given that it started from

position −→x 0 at time t = 0 and that there is a partially absorbing boundary at x = 0.

We shall integrate this function over the right half-plane to obtain the probabil-

ity distribution function for finding the particle in the right half-plane at any given

time t, that is

Γ(t|x0) =
∫

∞

−∞

∫
∞

0
P(x,y, t|x0,y0) dxdy .

Substituting P(−→x , t) as given in Equation (4.9) into this equation,

Γ(t|x0) =
1

4πDt

∫
∞

−∞

∫
∞

0

[
e−

1
4Dt [(x−x0)

2 +(y−y0)
2]+ e−

1
4Dt [(x+x0)

2 +(y−y0)
2]
]

dxdy

−
∫

∞

−∞

∫
∞

0

κ

πD(x+ x0)+2πDtκ

[
e−

1
4Dt [(x+x0)

2 +(y−y0)
2]
]

dxdy .

Evaluating the integrals in the first term, we have

Γ(t|x0) =
1
2

[
erfc

(
− x0√

4Dt

)
+ erfc

(
x0√
4Dt

)]
−
∫

∞

0

√
4πDt κ

πD(x+ x0)+2πDtκ

(
e−

1
4Dt (x+x0)

2
)

dx .
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Since 1
2

[
erfc

(
− x0√

4Dt

)
+ erfc

(
x0√
4Dt

)]
= 1, we can write

Γ(t|x0) = 1−
∫

∞

0

√
4πDt κ

πD(x+ x0)+2πDtκ

(
e−

1
4Dt (x+x0)

2
)

dx .

Let Γ(t|x0) = 1−
√

4πDt κ I, where

I =
∫

∞

0

1
πD(x+ x0)+2πDtκ

(
e−

1
4Dt (x+x0)

2
)

dx .

Rewriting I, we have

I =
1

πD

∫
∞

0

(
1

x+(x0 +2tκ)

)
e−

1
4Dt (x+x0)

2
dx .

We notice that this integral does not converge, therefore, to evaluate the integral

analytically, we Taylor expand the fraction in the integrand near x = 0 to have

I ' 1
Dπ

∫
∞

0

(
1

(x0 +2tκ)
− x

(x0 +2tκ)2 +
x2

(x0 +2tκ)3 + . . .

)
e−

1
4Dt (x+x0)

2
dx .

I ' 1
Dπ(x0 +2tκ)

[∫
∞

0
e−

1
4Dt (x+x0)

2
dx− 1

(x0 +2tκ)

∫
∞

0
xe−

1
4Dt (x+x0)

2
dx+ . . .

]
.

Evaluating the integrals, we obtain

I ' 1
Dπ(x0 +2tκ)

[√
4πDt
2

erfc
(

x0√
4Dt

)
− 1

2(x0 +2tκ)

(
4Dt e(−

x2
0

4Dt )−
√

4πDt x0 erfc
(

x0√
4Dt

))
+ . . .

]
.

Therefore,

I ' 1
Dπ(x0 +2tκ)

[√
4πDt
2

erfc
(

x0√
4Dt

)
− 1

2(x0 +2tκ)

(
4Dt e(−

x2
0

4Dt )−
√

4πDt x0 erfc
(

x0√
4Dt

)) ]
.

(4.10)
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It is important to point out that this solution is valid for 1 < |x0 +2κt|. Thus

Γ(t|x0) = 1−
√

4πDt κ

πD(x0 +2tκ)

[√
4πDt
2

erfc
(

x0√
4Dt

)
− 1

2(x0 +2tκ)

(
4Dt exp

(
−

x2
0

4Dt
)

)
−
√

4πDt x0 erfc
(

x0√
4Dt

))]
.

Simplifying, we have the probability distribution function for finding the particle

in the right half-plane at time t as

Γ(t|x0) = 1−
[(

1+
x0

(x0 +2tκ)

)
2t κ

(x0 +2tκ)
erfc

(
x0√
4Dt

)
− 4(Dt)3/2κ√

πD(x0 +2tκ)2 exp
(
−

x2
0

4Dt

)]
.

(4.11)

where κ is the rate of absorption on the boundary, x0 is the initial position of the

particle, and D is its diffusion coefficient.

We observe from the Robin boundary condition D ∂P
∂x = κP that if κ = 0, the

boundary condition becomes a perfectly reflecting (Neumann) boundary condition,
∂P
∂x = 0. And if we set κ = 0 in the probability distribution function in Equation

(4.11), we have Γ(t|x0) = 1 which corresponds to the probability that the particle

is in the right half-plane at time t, given that the boundary at x = 0 is perfectly

reflecting. This is logical because the particle will remain in the region for all time

since the boundary is perfectly reflecting.

On the other hand, if we take the limit of the Robin boundary condition as κ

tends to infinity, the boundary condition becomes the perfectly absorbing boundary

condition, P = 0. Also, taking the limit of the distribution function in Equation

(4.11) as κ tends to infinity, we have

Γ(t|x0) = 1− erfc
(

x0√
4Dt

)
=

1
2

[
erfc

(
− x0√

4Dt

)
− erfc

(
x0√
4Dt

)]
,

which is the same as the probability distribution function derived in Chapter 3

(Equation (3.19)) for finding a diffusing particle in the right half-plane, where the

boundary at x = 0 is perfectly absorbing. This shows that the probability distri-
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bution function for a partially absorbing boundary is a weighted average of the

distribution functions for an absorbing boundary and that of a reflecting boundary.

Next, we simulate trajectories with the particle based simulation software [2],

calculate the probability of finding a diffusing particle in the right half-plane from

the simulation, and compare the result to that of the probability distribution func-

tion in Equation (4.11). To calculate the probability of finding a particle performing

Brownian motion in a region at a specific time with simulation, we simulate several

trajectories that all start at the same point, count the number of trajectories that are

remaining in the region at each time step and divide by the initial number of tra-

jectories. This gives the probability that a single trajectory that started a Brownian

motion at that point is still in the region at each time step. We specify a particular

rate of absorption on the boundary κ , and use the relation in Equation (2.9) to get

the corresponding probability of absorption on the boundary which is then used for

the simulation.

(a) Probability of finding the particle
in the right half-plane.

(b) Absolute difference of the analytic and
simulated result.

Figure 4.2: The comparison of the probability of finding the particle in the
right half-plane obtained from the simulation and that of the probability
distribution function in Equation (4.11).

Figure 4.2a shows a comparison of the probability that the particle perform-

ing Brownian motion in the right half-plane is still in the region at time t, calcu-

lated from simulation, and that of the probability distribution function in Equation

(4.11), while Figure 4.2b shows the absolute difference of the two results. For the
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result obtained from simulation, we averaged over 10 different simulations using

10,000 particles for each simulation, with κ = 0.5 which corresponds to probabil-

ity of absorption P= 0.044, D = 0.1, and x0 = 2. We can see from this figure that

the two result agree to a large extent.

Let us calculate the mean and variance of first passage time for the diffusing

particle to exit the right half-plane. First, we notice that the probability that the

particle is still in the right half-plane at time t given that it started at point x0 is

equivalent to the probability that the time it takes the particle to be absorbed by the

boundary given that it started from x0 is greater than t, that is,

Γ(t|x0) =
∫

∞

t
Ψ(τ|x0)dτ , (4.12)

where Ψ(τ|x0) is the probability distribution function for the first passage time for

the particle to exit the region. From Equation (4.12), we have

Ψ(t|x0) =−
∂

∂ t
Γ(t|x0) . (4.13)

Substituting Γ(t|x0) as given in Equation (4.11) into Equation (4.13), we obtain

Ψ(t|x0) =
4κx2

0
(x0 +2tκ)3 erfc

(
x0√
4Dt

)
+

[
x2

0 +2tκ
(

x0−
3D
κ

+
8Dt

(x0 +2tκ)

)]
× κ√

Dπt(x0 +2tκ)2
exp
(
−

x2
0

4Dt

)
.

(4.14)

Let Π(t|x0) be the mean first passage time for the particle to exit the region, given

that it started at x0. Since the first moment of the probability distribution for the

first passage time is the mean first passage time, we have

Π(t|x0) =
∫

∞

0
t Ψ(t|x0)dt . (4.15)

The second moment of the distribution is

Φ(t|x0) =
∫

∞

0
t2

Ψ(t|x0)dt . (4.16)
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Therefore, the variance of first passage time for the particle to exit the region given

that it started at x0 is

V(t|x0) = Φ(t|x0)−Π(t|x0)
2 . (4.17)

We substitute Equation (4.14) into Equations (4.15) and (4.16), and evaluate the

resulting integrals numerically. These results are then used to compute the mean

and variance of first passage time for the particle to exit the right half-plane.

(a) Mean first passage time. (b) Variance of first passage time.

Figure 4.3: The mean and variance of first passage time for a particle per-
forming Brownian motion in the right half-plane, with a partially ab-
sorbing boundary at x = 0.

Figure 4.5 shows the plots of the mean and variance of first passage time for a

diffusing particle to exit the right half-plane for different values of κ . We observe

from Figure 4.5a that the mean first passage time increases as the initial position of

the particle moves farther away from the boundary. This is not surprising because

the farther away from the boundary the particle starts, the longer it takes it to reach

the boundary. Also we observe that as the rate of absorption on the boundary in-

creases, the mean first passage time decreases. This is because the particle is easily

absorbed on the boundary as the rate of absorption on the boundary increases. The

mean and variance of first passage time tells us how long we should expect a parti-

cle performing Brownian motion in the right half-plane to stay in the region before

it gets absorbed by the boundary.
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4.2 The disk problem
Suppose the diffusing particle is in a disk-shaped region of radius a with a partially

absorbing boundary. Let Ω = {(r,θ) |0 < r ≤ a,0≤ θ ≤ 2π}, then the probability

of finding the particle at position−→x =(r,θ) at time t, given that it started at position
−→x 0 = (r0,θ0) at time t = 0 satisfies

∂P
∂ t

= D∇
2P , −→x = (r,θ) ∈Ω , t > 0 ,

D
∂P
∂n

=−κP , on ∂Ω ,

P is finite as r −→ 0 ,

P(−→x ,0) = δ (−→x −−→x 0) .

(4.18)

where κ is the rate of absorption on the boundary, and D is the diffusion coefficient

of the particle.

We shall solve this problem using separation of variables. First, let us rewrite

the problem by writing the delta function in the initial condition as a forcing in the

PDE, that is,

∂P
∂ t

=D
(

1
r

∂P
∂ r

+
∂ 2P
∂ r2

)
+

δ (r− r0)δ (t)
2πr

, 0 < r ≤ a , t > 0 ,

D
∂P
∂ r

=−κP , on r = a ,

P is finite as r −→ 0 ,

P≡ 0, at t = 0 .

(4.19)

It is important to note that we have assumed that there is uniformity in the θ

direction so that the problem is independent of θ .

From the problem in Equation (4.19), we consider the homogeneous part of the

PDE

∂P
∂ t

=D
(

1
r

∂P
∂ r

+
∂ 2P
∂ r2

)
, (4.20)
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together with the following boundary conditions

D
∂P
∂ r

=−κP , on r = a ,

P is finite as r −→ 0 .
(4.21)

Let P(r, t) = R(r)T (t), then from Equations (4.20) and (4.21), we have

R(r)
d
dt

T (t) = D
(

1
r

T (t)
d
dr

R(r)+T (t)
d2

dr2 R(r)
)
,

D
d
dr

R(r) =−κR(r) on r = a ,

R(r) is finite as r −→ 0 .

(4.22)

Let us consider

1
DT (t)

d
dt

T (t) =
1

R(r)

(
1
r

d
dr

R(r)+
d2

dr2 R(r)
)
.

For this to hold, it must equal a constant, that is

1
DT (t)

d
dt

T (t) =
1

R(r)

(
1
r

d
dr

R(r)+
d2

dr2 R(r)
)
=−λ

2 . (4.23)

where λ is a constant.

Therefore, we have the following equations

1
DT (t)

d
dt

T (t) =−λ
2 and

1
R(r)

(
1
r

d
dr

R(r)+
d2

dr2 R(r)
)
=−λ

2 . (4.24)

Consider

1
R(r)

(
1
r

d
dr

R(r)+
d2

dr2 R(r)
)
=−λ

2 .

Multiplying through by r2R(r) and re-arranging, we have the Bessel equation

r2R′′(r)+ rR′(r)+ r2
λ

2R(r) = 0 .
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And the solution of this equation is

R(r) = AJ0(λ r)+BY0(λ r) ,

where J0(z) is the Bessel function of the first kind of order zero, and Y0(z) is the

Bessel function of the second kind of order zero.

To satisfy the condition that R(r) is finite as r tends to zero, we must have B= 0

because Y0(λ r) is unbounded as r tends to zero. Therefore,

R(r) = AJ0(λ r) .

Imposing the second boundary condition in Equation (4.22), we have

D
d
dr

J0(λ r) =−κJ0(λ r) , on r = a .

And this gives the following equation for the eigenvalues of the system

κJ0(λa)+DλJ1(λa) = 0. (4.25)

Let βm be the mth zero of the eigenvalue equation, then λm = βm
a . Therefore, we

have the eigen condition

aκJ0(βm)+DβmJ1(βm) = 0, m = 1,2,3, . . . (4.26)

Without loss of generality, let Am = 1 for all m. Then

Rm(r) = J0(λmr) = J0

(
βm

a
r
)
, m = 1,2,3, . . . (4.27)

Recall that P(r, t) = R(r)T (t). This implies that Pm(r, t) = Rm(r)Tm(t) for all m.

Therefore, using the principle of superposition, we have

P(r, t) =
∞

∑
m=1

Tm(t)Rm(r) =
∞

∑
m=1

Tm(t)J0

(
βm

a
r
)
. (4.28)
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Now, let

∞

∑
m=1

Hm(t)Rm(r) =
δ (r− r0)δ (t)

2πr
, (4.29)

Substituting Rm(r) into this equation, and multiplying through by r, we have

∞

∑
m=1

r Hm(t)J0

(
βm

a
r
)
=

δ (r− r0)δ (t)
2π

.

Multiplying both sides by J0

(
βn
a r
)

, and integrating with respect to r from 0 to a,

∞

∑
m=1

Hm(t)
∫ a

0
r J0

(
βm

a
r
)

J0

(
βn

a
r
)

dr =
δ (t)
2π

∫ a

0
J0

(
βn

a
r
)

δ (r− r0)dr .

By the orthogonality property of Bessel functions,

∫ a

0
r J0(

βm

a
r)J0

(
βn

a
r
)

dr = 0 , m 6= n .

And so, we have

Hm(t)
∫ a

0
r J2

0

(
βm

a
r
)

dr =
δ (t)
2π

J0

(
βm

a
r0

)
.

But ∫ a

0
r J2

0

(
βm

a
r
)

dr =
a2

2
[
J2

0 (βm)+ J2
1 (βm)

]
.

Therefore,

Hm(t) =
J0

(
βm
a r0

)
πa2

[
J2

0 (βm)+ J2
1 (βm)

]δ (t) . (4.30)

From Equation (4.19), we have

∂P
∂ t

=D
(

1
r

∂G
∂ r

+
∂ 2G
∂ r2

)
+

δ (r− r0)δ (t)
2πr

, (4.31)
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Substituting Equations (4.28) and (4.29) into Equation (4.31),

∞

∑
m=1

T ′m(t)Rm(r) = D

[
1
r

∞

∑
m=1

Tm(t)R′m(r)+
∞

∑
m=1

Tm(t)R′′m(r)

]
+

∞

∑
m=1

Hm(t)Rm(r) ,

= D

[
∞

∑
m=1

Tm(t)
(

1
r

R′m(r)+ R′′m(r)
)]

+
∞

∑
m=1

Hm(t)Rm(r) .

(4.32)

From the Bessel equation, we have

R′′m(r)+
1
r

R′m(r) =−λ
2
mRm(r) .

Therefore, Equation (4.32) becomes

∞

∑
m=1

T ′m(t)Rm(r) =
∞

∑
m=1

(
−Dλ

2
mTm(t)+Hm(t)

)
Rm(r) .

And from this equation, we have

T ′m(t) =−Dλ
2
mTm(t)+Hm(t) .

Substituting Hm(t) as given in Equation (4.30) into this equation,

T ′m(t)+Dλ
2
mTm(t) =

J0

(
βm
a r0

)
πa2

[
J2

0 (βm)+ J2
1 (βm)

]δ (t) .

This is a first order linear ODE. We shall solve this ODE using the integrating

factor method. The integrating factor is exp
(
Dλ 2

mt
)
, therefore,

d
dt

[
exp
(
Dλ

2
mt
)

Tm(t)
]
=

J0

(
βm
a r0

)
πa2

[
J2

0 (βm)+ J2
1 (βm)

]δ (t)exp
(
Dλ

2
mt
)
.
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Integrating both sides of the equation with respect to t,

exp
(
Dλ

2
mt
)

Tm(t) =
J0

(
βm
a r0

)
πa2

[
J2

0 (βm)+ J2
1 (βm)

] ∫ t

0
δ (s)exp

(
Dλ

2
ms
)

ds+Em , (4.33)

where Em are constants of integration.

We shall use the initial condition P(r,0) = 0 to find the constants Em. We have

P(r,0) =
∞

∑
m=1

Tm(0)Rm(r) .

Setting t = 0 in Equation (4.33), we get Tm(0) = Em. And substituting this into

P(r,0) gives

P(r,0) =
∞

∑
m=1

Tm(0)Rm(r) =
∞

∑
m=1

Em Rm(r) .

Using the orthogonality property of Bessel functions and the fact that P(r,0) = 0,

we have that Em = 0 for all m. Therefore, from Equation (4.33) we obtain

Tm(t) =
J0

(
βm
a r0

)
πa2

[
J2

0 (βm)+ J2
1 (βm)

] exp
(
−Dλ

2
mt
)
.

Substituting λm = βm
a and J1(βm) =

κ

D λmJ0(βm), we have

Tm(t) =
D2β 2

m

a2π

J0

(
βm
a r0

)
(D2β 2

m +κ2a2)J2
0 (βm)

exp
(
−D

β 2
m

a2 t
)
. (4.34)

Substituting Tm(t) and Rm(r) into Equation (4.28), we have

P(r, t|r0) =
D2

a2π

∞

∑
m=1

β 2
mJ0

(
βm
a r0

)
J0

(
βm
a r
)

(D2β 2
m +κ2a2)J2

0 (βm)
exp
(
−D

β 2
m

a2 t
)
. (4.35)

This is the probability distribution function for finding a particle performing Brow-

nian motion in a disk-shaped region of radius a, at a distance r from the center of

the region at time t, given that it started at a distance r0 from the center, and that
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the region has a partially absorbing boundary.

Lastly, we integrate Equation (4.35) to get the probability distribution function

for finding the particle inside the disk-shaped region at time t.

Γ(t|r0) =
D2

a2π

∞

∑
m=1

β 2
m J0

(
βm
a r0

)
(D2β 2

m +κ2a2)J2
0 (βm)

exp
(
−D

β 2
m

a2 t
)∫ 2π

0

∫ a

0
r J0

(
βm

a
r
)

dr dθ .

Γ(t|r0) = 2D2
∞

∑
m=1

βm J0

(
βm
a r0

)
J1(βm)

(D2β 2
m +κ2a2)J2

0 (βm)
exp
(
−D

β 2
m

a2 t
)
. (4.36)

Figure 4.4a shows the comparison of the probability of finding a diffusing par-

ticle in a disk-shaped region of radius a = 5 calculated from simulation and that of

the probability distribution function in Equation (4.36), while Figure 4.4b shows

the absolute difference of the two results. For the simulated result, we averaged

over 10 different simulations each with 10,000 particles starting from a distance

r0 = 2 away the center of the region, with diffusion coefficient D = 0.1, and the

rate of absorption on the boundary κ = 0.85. We observe from theses figures that

the simulated result is in accordance with that obtained from the probability distri-

bution function.

(a) Probability of finding the particle in
the disk-shaped region.

(b) Absolute difference of the analytic and
numerical result.

Figure 4.4: The comparison of the probability of finding a particle in the disk-
shaped region calculated from simulation and that of the probability
distribution function in Equation (4.36).
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Similar to the right half-plane problem, we want to calculate the mean and

variance of first passage time for a particle performing Brownian motion in a disk-

shaped region to exit the region. Substituting Equation (4.36) into Equation (4.13),

we obtain the distribution function for first passage time for a diffusing particle in

the disk-shaped region,

Ψ(t|r0) =
2D3

a2

∞

∑
m=1

β 3
m J0

(
βm
a r0

)
J1(βm)

(D2β 2
m +κ2a2)J2

0 (βm)
exp
(
−D

β 2
m

a2 t
)
. (4.37)

Using Equations (4.15), (4.16), and (4.17), we can get the mean and variance of

first passage time for the particle. We substitute Equation (4.37) into the integrals in

Equations (4.15) and (4.16), and evaluate the resulting integrals numerically to get

the mean and the second moment of the distribution. These results are then used

in Equation (4.17) to compute the variance of first passage time for the particle.

Figure 4.5 shows the plots of the mean and variance of first passage time for a

particle performing Brownian motion in a disk-shaped region of radius a = 7, with

a partially absorbing boundary.

(a) Mean first passage time. (b) Variance of first passage time.

Figure 4.5: The mean and variance of first passage time for a particle per-
forming Brownian motion in a disk-shaped region with a partially ab-
sorbing boundary.

For this figure, we used D= 0.1, and varied the rate of absorption on the bound-

ary and the initial position of the particle. It is important to note that the initial
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position of the particle r0 is the distance of the particle from the centre of the disk-

shaped region. As we would expect, the mean first passage time for the particle

to exit the region decreases as the initial position of the particle gets closer to the

boundary. This is due to the fact that the time it takes the particle to reach the

boundary when it starts close to the boundary is less compared to when the particle

starts farther away from the boundary. Also, like in the right half-plane problem,

we observe that the mean first passage time decreases as the rate of absorption on

the boundary increases. This is because the particle is easily absorbed as the rate

of absorption on the boundary gets larger. Unlike the case of a particle in the right

half-plane where the mean and variance of first passage time are linear with respect

to the initial position of the particle, they are non-linear for this case, and this is as

a result of the geometry of the region.

4.2.1 Estimating the rate of absorption on the boundary

In this section, we present a mathematical technique for estimating the rate of ab-

sorption on a partially absorbing boundary using the probability distribution func-

tions we derived for a particle performing Brownian motion in regions with par-

tially absorbing boundary together with maximum likelihood estimation.

First, let us derive the likelihood function. We define the likelihood function of

having the parameter κ given some observations as

`(κ|Observations) = P(Observations;κ) . (4.38)

where P(Observations;κ) is the probability of having these observations with pa-

rameter κ . There are only two possible observations here;

• the diffusing particle has been absorbed by the boundary at time t

• the particle is still in the region at time t

Let Σ be our region of interest. Suppose there are n+m identical particles

starting a Brownian motion at a specific point in Σ at time t = 0, the motion of

each particle is independent. Let P(Particle in Σ;κ) be the probability that a par-

ticle is still in the region of interest at time t given that κ is a parameter, and let

P(Particle absorbed;κ) be the probability that a particle has been absorbed by the
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boundary at time t. Then, the probability of having the observations that n parti-

cles are still remaining in the region, while m of them have been absorbed by the

boundary at time t, given that κ is a parameter is

P(Observations;κ) = P(Particle is in Σ;κ)n×P(Particle absorbed;κ)m .

But P(Particle absorbed;κ) = 1−P(Particle is in Σ;κ), therefore,

P(Observations;κ) = P(Particle is in Σ;κ)n× (1−P(Particle is in Σ;κ))m .

And so, the likelihood function is

`(κ|Observations) = P(Particle is in Σ;κ)n× (1−P(Particle is in Σ;κ))m ,

where n is the number of particles left in the region of interest, and m is the number

of particles that were absorbed by the boundary after a specific time.

Thus, the likelihood function can be written as

`(κ|Observations) = (Γ(t|x0))
n× (1− (Γ(t|x0))

m , (4.39)

where Γ(t|x0) is the probability distribution function for finding a particle in the

region of interest at time t given that it started from the point x0 in the region. That

is, Equation (4.11) for the right half-plane problem, and Equation (4.36) for the

disk problem.

We need to maximize the likelihood function with respect to κ , and the κ

value that maximizes this function is the most probable rate of absorption on the

boundary with respect to the observations or data.

To validate this idea, we simulate trajectories using the particle based simula-

tion software [2] with a specific rate of absorption on the boundary, collect data

from the simulation in terms of the number of trajectories remaining in the region

of interest and those that have been absorbed by the boundary after a specified

time. The data collected are used in the likelihood function in Equation (4.39), and

then the resulting function is maximized with respect to κ to recover the rate of

absorption used for the simulation.
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(a) (b)

Figure 4.6: Estimates of the rate of absorption on the boundary with stan-
dard deviation error bars based on simulated data considering different
particle initial positions x0, for the half-plane problem.

Figure 4.6 shows the result of our estimates of the rate of absorption on the

boundary with standard deviation error bars, based on simulated data for a particle

performing Brownian motion in the right half-plane. Here, we used a fixed rate

of absorption κ = 0.75, diffusion coefficient D = 0.1, and vary the initial position

of the particles. For each initial position, we simulate 10,000 trajectories for time

t = 20, and then use our estimation technique to recover the rate of absorption on

the boundary using the simulated data. The estimates in Figure 4.6a were obtained

with 20 simulations, while those in Figure 4.6b were obtained with 30 simulations.

We observe from these figures that we have good estimates, and that the accuracy of

our estimate increases as the number of simulations used increases. This suggests

that more identical experimental procedures should be considered when estimating

the rate of absorption on the boundary in order to increase the accuracy of the

estimate. In addition, we notice that the accuracy of the estimates decreases as the

initial position of the particles moves farther away from the boundary. This is due

to the fact that when the particles start far away from the boundary, it takes more

time for them to get to the boundary and they spread out more compared to when

the start closer to the boundary. To get a better estimate when the particles starts

far away from the boundary, we can either increase the final time for the simulation
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or increase the number of particle in the simulation.

(a) (b)

Figure 4.7: Estimates of the rate of absorption on the boundary with standard
deviation error bars based on simulated data using different κ values,
for the half-plane problem.

In Figure 4.7, we show our estimates of the rate of absorption on the boundary

with standard deviation error bars for a situation where we fixed the initial posi-

tion of the particle and diffusion coefficient, but vary the rate of absorption on the

boundary. The rates of absorption used are 0.5,0.8,1.1, and 1.5, with diffusion co-

efficient D= 0.1, final time t = 20, and particle initial position x0 = 2. The result in

Figure 4.7a was obtained using 20 different simulations, while that of Figure 4.7b

was obtained using 30 simulations. Similar to the estimates in Figure 4.6, we ob-

serve that the estimates get better as the number of simulations increases, although

this comes at the expense of computational time.

Next, we present similar results for the disk problem. Figure 4.8 shows the

estimates of the rate of absorption on the boundary of the disk-shaped region with

standard deviation error bar. For these estimates, we consider a region of radius

a = 5, with rate of absorption on the boundary κ = 0.5, diffusion coefficient D =

0.1, final time t = 20, and vary the initial position of the particles. We used 10

different simulations to obtain the estimates in Figure 4.8a and 20 simulations for

those in Figure 4.8b. We notice from this figure that we also have better estimates

when the particle starts close to the boundary and when we use more simulations
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like in the case of the half-plane problem.

(a) (b)

Figure 4.8: Estimates of the rate of absorption on the boundary with stan-
dard deviation error bars based on simulated data considering different
particle initial positions r0, for the disk problem.

(a) (b)

Figure 4.9: Estimates of the rate of absorption on the boundary with standard
deviation error bars based on simulated data using different κ values,
for the disk problem.

Figure 4.9a shows the estimates of the rate of absorption on the boundary of

a disk-shaped region with standard deviation error bar for a case where we varied

the rate of absorption on the boundary. We used the same value of the parameters
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a, D, and t, as that of Figure 4.8, with initial position r0 = 2, and vary the rate of

absorption on the boundary. The κ values used for this figure are 0.5,0.8,1.1, and

1.5. Similar to the right half-plane problem, we observe that the accuracy of our

estimates decreases as the rate of absorption on the boundary increases.

In the next chapter, we shall consider a situation where the rate of absorption

on the boundary fluctuates over time.
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Chapter 5

Fluctuating Boundary

In this chapter, we consider scenarios where the boundary fluctuates from one

boundary type to another. This chapter is motivated by a situation where the barrier

causing the boundary is made up of some other diffusing particles. We present a

technique for estimating the rate of absorption on the boundary by approximating

the fluctuating boundary with a specific partially absorbing boundary. Further-

more, we consider a situation where the boundary switches between two boundary

types at a specified time interval, and present mathematical relations for finding the

effective rate of absorption on the boundary as a function of the switching time.

5.1 Estimating the rate of absorption on a fluctuating
boundary

So far we have been discussing boundaries without taking a close look at the ma-

terial that forms the boundaries. We know that in some cases, the barrier causing

the boundary is not fixed. For example in cellular biology, molecules diffusing at

a slow rate, and with high density may restrict the motion of some other molecules

diffusing at a higher rate, thereby forming a boundary for these molecules. Figure

5.1a shows an illustration of a particle performing Brownian motion in the right

half-plane (in black), where some other particles also performing Brownian mo-

tion (in blue) create a barrier forming a boundary at x = 0, and Figure 5.1b shows

an illustration of a particle performing Brownian motion in a disk-shaped region
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bounded by some particles that are also diffusing.

(a) The right half-plane. (b) A disk-shaped region.

Figure 5.1: A particle performing Brownian motion in some region bounded
by some other diffusing particles.

In this situation, we do not expect the boundary to be perfectly absorbing (or

transmitting) or perfectly reflecting for all time, rather we would expect it to fluctu-

ate between perfectly reflecting and partially absorbing over time. This boundary

can also be seen as a stochastic switching boundary (see [8]) where the switching

rate depends on the diffusion coefficient of the particles that create the barrier. An

important question to ask is: How can we estimate the rate of absorption on the

boundary?

Since the boundary fluctuates between partially absorbing and perfectly reflect-

ing, we can model this boundary with a time varying Robin boundary condition,

that is, we let the rate of absorption in the Robin boundary condition depends on

time, as shown below,

D
∂P
∂x

= κ(t)P , (5.1)

where κ(t) is the time-dependent rate of absorption on the boundary.

Note that we are only considering a situation where the particle of interest

(black in Figure 5.1) is either absorbed by the boundary or reflected back into the

domain. Also, we assume that the boundary can never be free of the molecules that

create the barrier, that is , the boundary is never perfectly absorbing.
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The challenge with this problem is solving the PDE in Equation (4.1) together

with the time varying Robin boundary condition analytically. As a result of this,

we consider a much simpler Robin boundary condition using mean field approxi-

mation,

D
∂P
∂x

= κP , (5.2)

where κ is the average of the rates of absorption on the boundary over time.

Now we can approximate the fluctuating boundary with a partially absorbing

boundary where the rate of absorption on the boundary is the average of the fluc-

tuating rates of absorption on the boundary.

For the half-plane problem, we have Ω = {(x,y) |0≤ x < ∞, −∞ < y < ∞}.
The probability that the particle of interest is at position −→x at time t given that it

started at −→x 0 at time t = 0, P(−→x , t|−→x 0,0) satisfies the following problem;

∂P
∂ t

= D∇
2P , −→x ∈Ω , t > 0 ,

P(−→x ,0) = δ (−→x −−→x 0) ,

D
∂P
∂x

= κP , on x = 0, −∞ < y < ∞,

P−→ 0 , as x−→ ∞ .

(5.3)

Notice that this problem is exactly the same with the problem in Equation (4.1)

if we replace κ with κ . Therefore, we adopt the solution in Equation (4.11), and

so we have that the probability distribution function for finding the particle in the

right half-plane at time t given that it started at x0 is

Γ(t|x0) = 1−
[(

1+
x0

(x0 +2tκ)

)
2t κ

(x0 +2tκ)
erfc

(
x0√
4Dt

)
− 4(Dt)3/2κ√

πD(x0 +2tκ)2 exp
(
−

x2
0

4Dt

)]
,

(5.4)

where κ is the average of the rates of absorption on the boundary over time.

Similarly, for a disk-shaped region, Ω = {(r,θ) |0 < r ≤ a,0≤ θ ≤ 2π}, and

the probability of finding the particle of interest at position −→x = (r,θ) at time t
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given that it started at position −→x 0 = (r0,θ0) at time t = 0 satisfies

∂P
∂ t

= D∇
2P , −→x = (r,θ) ∈Ω , t > 0 ,

D
∂P
∂n

=−κP , on ∂Ω ,

P is finite as r −→ 0 ,

P(−→x ,0) = δ (−→x −−→x 0) .

(5.5)

From Equation (4.36), the probability distribution function for finding the particle

in the disk-shaped region at t given that it started at a distance r0 from the center of

the region is

Γ(t|r0) = 2D2
∞

∑
m=1

βm J0

(
βm
a r0

)
J1(βm)(

D2β 2
m +κ

2a2
)

J2
0 (βm)

exp
(
−D

β 2
m

a2 t
)
. (5.6)

where κ is the average of the rates of absorption on the boundary over time.

Next, we verify that the mean field approximation works for these problems

by simulating trajectories in a region where the rate of absorption on the bound-

ary fluctuates over time, and then calculate the probability of finding a particle

performing Brownian motion inside the region from the simulation. In our simula-

tion, we let the switching on the boundary happen at every unit time interval, and

then calculate the average rate of absorption on the boundary which will be used in

the probability distribution functions in Equations (5.4) and (5.6).

Figure 5.2 shows the fluctuation in the rate of absorption on the boundary over

time, and the comparison of the probability for finding the particle of interest in

the right half-plane calculated from simulation and the result obtained using mean

field approximation, while Figure 5.3 shows similar results for a disk-shaped re-

gion of radius a = 5. For these figures, we averaged over 10 simulations, each with

10,000 trajectories, with diffusion coefficient D = 0.1, x0 = 5 for the half-plane

problem, and r0 = 2 for the disk problem. Although the rates of absorption on the

boundaries of the two regions fluctuate over time in the simulations, the probabil-

ity of finding the particle of interest in the regions obtained using the mean field

approximation still agrees with the probability calculated form simulation. This
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(a) Fluctuation on the boundary in terms
of κ .

(b) Prob. of finding the particle in the right
half-plane.

Figure 5.2: Comparison of the probability of finding the particle of interest
in the right half-plane calculated from the simulation and the prediction
from the mean field approximation.

(a) Fluctuation on the boundary in terms
of κ .

(b) Prob. of finding the particle in the disk-
shaped region.

Figure 5.3: Comparison of the probability of finding the particle of interest
in the a disk-shaped region calculated from the simulation and the pre-
diction from the mean field approximation.

shows that the mean approximation works for these problems and that the effective

rate of absorption on the boundary is the average of the fluctuating rates of absorp-

tion. It is also true that this mean field approximation works in a situation where

the switching on the boundary happens at random.
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5.2 Switching boundary
In this section, we consider situations where the boundary switches between two

specific boundary types. First, we consider a case where the boundary switches be-

tween a perfectly reflecting boundary and a specific partially absorbing. Followed

by the case where the boundary switches between a perfectly absorbing boundary

and a perfectly reflecting boundary. For both cases, we approximate the switch-

ing boundary with a partially absorbing boundary, where the rate of absorption on

the boundary is the effective rate of absorption that best approximates the solution,

given the switching on the boundary. We also derive an empirical mathematical

relation for the effective rate of absorption as a function of the boundary switching

time.

5.2.1 Switching between perfectly reflecting and partially absorbing

Suppose the boundary of the region where the particle is performing Brownian

motion switches between a perfectly reflecting boundary and a specific partially

absorbing boundary at some specified time interval. Since a perfectly reflecting

boundary condition can be obtained from the Robin boundary condition by setting

the rate of absorption on the boundary to be zero (i.e κ = 0), we approach this

problem from the point of view of a partially absorbing boundary with rate of ab-

sorption that switching between two specific rates (say, κ1 = 0 and κ2). We begin

by setting the effective rate of absorption on the boundary to be the average of the

two rates of absorption, that is, κe f f = κ . To validate this approximation, we sim-

ulate trajectories in a region where the rate of absorption on the boundary switches

between these two rates, and from the simulation, we calculate the probability of

finding the particle in the region at each time step and compare with the result of

the appropriate probability distribution function.

Since we are approximating the switching boundary with a partially absorbing

boundary whose rate of absorption is κe f f , the resulting problem is the exactly the

same as problem (4.1) for the half-plane problem and problem (4.18) for the disk

problem with κ replaced by κe f f . Therefore, the probability distribution function
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for finding the particle in the right half-plane is,

Γ(t|x0) = 1−
[(

1+
x0

(x0 +2tκe f f )

)
2t κe f f

(x0 +2tκe f f )
erfc

(
x0√
4Dt

)
−

4(Dt)3/2κe f f√
πD(x0 +2tκe f f )2 exp

(
−

x2
0

4Dt

)]
.

(5.7)

While that of a disk-shaped region is,

Γ(t|r0) = 2D2
∞

∑
m=1

βm J0

(
βm
a r0

)
J1(βm)(

D2β 2
m +κ2

e f f a2
)

J2
0 (βm)

exp
(
−D

β 2
m

a2 t
)
. (5.8)

Figure 5.4 shows the comparison of the probabilities calculated from simula-

tion and that of the probability distribution function in Equation (5.7).

We notice from these plots that irrespective of the value of κ2, there is always

a discrepancy between the result from the probability distribution function and that

of the simulation. This suggests that the average of the rates of absorption on the

boundary is not the effective rate of absorption. We have presented the plots for

the right half-plane problem only. The analogous results for the disk problem have

a similar discrepancy.

The next question is; How can we find the effective rate of absorption on the

boundary? To answer this question, we fit the probability distribution function

in Equation (5.7) to the probability of finding the particle in the right half-plane

calculated from simulation as shown is Figure 5.5. The κ value that best fits the

distribution function to the result from simulation is the effective rate of absorption

on the boundary κe f f . Following the same procedure, we can fit the probability

distribution function in Equation (5.8) to simulated results to get the effective rate

of absorption on the boundary for the case of a disk-shaped region.

Our goal is to derive a mathematical relation that predicts the effective rate of

absorption κe f f as a function of the rate of absorption κ2 and the switching time of

the boundary. We define the switching time as a regular time interval at which the

boundary switches from one boundary type to the other, and denote it by α . Since

we can get the effective rate of absorption on the boundary by fitting a probabil-

ity distribution function to the probability for finding the particle in the region of
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Figure 5.4: Comparison of the probability of finding the particle of interest
in the right half-plane calculated from simulation and that of the proba-
bility distribution function in Equation (5.7).

interest calculated from simulation, we begin by doing this for different values of

α . The values of α considered are between 1/2 and 4 with an increment of 1/2.

Figure 5.6 shows the estimates of the effective rate of absorption obtained by fitting

the probability distribution functions in Equations (5.7) and (5.8) to the probability

calculated from simulation for different rate of absorption κ2 and switching time.

For the estimates in this figure, we averaged over 10 different simulations each

with 10,000 trajectories, diffusion coefficient D = 0.1, initial position x0 = 5 for

the right half-plane problem, and r0 = 2 for the disk problem with a disk-shaped re-

gion of radius a= 5. We notice from this figure that the estimates for the half-plane

problem is similar to that of the disk problem. Also, we observe that for each value

of α , the effective rate of absorption converges to a particular value as κ2 increases,

and this asymptote value of κe f f decreases as the switching time increases. These

64



Figure 5.5: Fitting the probability distribution function in Equation (5.7) to
result calculated from simulation in order to get the effective rate of
absorption on the boundary.

plots suggest that the relationship between the effective rate of absorption, κ2, and

switching time can be approximated by the function

κe f f (α;κ2) = f (α) [1− exp(−g(α)κ2)] , (5.9)

where f (α) and g(α) are saturation and rate functions, respectively, to be deter-

mined by fitting the model to the curves in Figure 5.6. We call f (α) a saturation

function because it predicts where the values of κe f f will saturate for each switch-

ing time, and g(α) a rate function because it gives the growth rate of κe f f for each

switching time.

Next, we fit the model in Equation (5.9) to each of the curves in Figure 5.6

to get the values of the functions f (α) and g(α) for each switching time α . The

results of the fits are shown in Figure 5.7. We observe from these plots that the
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(a) Estimates for half-plane problem. (b) Estimates for disk problem.

Figure 5.6: Estimates of the effective rate of absorption κe f f obtained by fit-
ting probability distribution functions to the simulated results for differ-
ent values of κ2 and switching time.

estimates for the functions f (α) and g(α) for the two geometries are very similar.

(a) Estimates for half-plane problem. (b) Estimates for disk problem.

Figure 5.7: Estimates of the values of the functions f (α) and g(α) obtained
by fitting the model in Equation (5.9) to the curves in Figure 5.6.

Lastly, we fit a linear polynomial to the curves of g(α) in Figure 5.7 using the
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polyfit command in MATLAB, and for the saturation function, we fit the function

f (α) =
µ1

1+
(

α

µ2

) , (5.10)

to the curve of f (α) in Figure 5.7 using the least squares curve fitting tool in

MATLAB. The parameters µ1 and µ2 are to be determined from the fit.

(a) Fits for half-plane problem. (b) Fits for disk problem.

Figure 5.8: Fittings functions to the estimated values for the functions f (α)
and g(α).

For the right half-plane problem, the functions obtained from the fittings are

f (α) =
0.8970

1+
(

α

1.7318

) , and g(α) = 0.1875α +0.4545 . (5.11)

And for the disk problem, we obtain

f (α) =
0.9344

1+
(

α

1.6515

) , and g(α) = 0.1938α +0.4337 . (5.12)

We notice that the functions f (α) and g(α) for the half-plane problem and the disk

problem are very similar. These equations can be used together with the model in

Equation (5.9) to predict the effective rate of absorption on the boundary as a func-

tion of the rate of absorption κ2 and the switching time, for a situation where the

boundary switches between a perfectly reflecting boundary and a specific partially
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absorbing boundary.

5.2.2 Switching between perfectly reflecting and perfectly absorbing

In this section, we consider a situation where the boundary switches between per-

fectly absorbing and perfectly reflecting. Similar to the case of Section 5.2.1, we

want to approximate the switching boundary with a partially absorbing boundary,

where the rate of absorption on the boundary is the effective rate of absorption.

Following a similar approach to that of Section 5.2.1, we derive a mathematical

relation for the effective rate of absorption on the boundary as a function of the

switching time. We consider the right half-plane problem and the disk problem,

with different switching time. For each switching time, we simulate trajectories

and calculate the probability of finding a particle performing Brownian motion in

the region of interest. Then we fit the probabilities obtained from the simulation to

the appropriate probability distribution function in order to estimate the effective

rate of absorption on the boundary.

(a) Boundary switches every 0.5 time units. (b) Boundary switches every 3 time units.

Figure 5.9: Fitting the probability distribution function in Equation (5.7) to
the probability calculated from simulation.

Figure 5.9 shows some of the fits of the probability distribution function in

Equation (5.7) to simulated results, while Figure 5.10 shows the fits of the proba-

bility distribution function in Equation (5.8) to simulated result. For these plots, we

averaged over 10 simulations each with 10,000 particles, D = 0.1, x0 = 5, a = 5,
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(a) Boundary switches every 0.5 time units. (b) Boundary switches every 3 time units.

Figure 5.10: Fitting the probability distribution function in Equation (5.8) to
the probability calculated from simulation.

and r0 = 2.

(a) Estimates for half-plane problem. (b) Estimates for disk problem.

Figure 5.11: Estimates of the effective rate of absorption κe f f obtained by
fitting probability distribution functions to the probability calculated
from simulation.

For this case, we also considered switching time between 1/2 and 4 with an

increment of 1/2, and for each value of α , we fit the distribution functions to the

simulated probability to get effective rate of absorption κe f f . The results of our

estimates are shown is Figure 5.11. We notice from the curves in this figure that as
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the switching time increases, the estimated values of the effective rate of absorption

on the boundary decreases. These plots suggest modelling the relationship between

the effective rate of absorption and the switching time with a decaying function.

Similar to the results in Section 5.2.1, the estimates of the effective rate of

absorption for the half-plane problem and the disk problem are very similar. We

also observe that these curves are similar to the curves for the saturation function

f (α) in Figure 5.7. For this reason, we fit a function similar to the one in Equation

(5.10) to these curves;

κe f f (α) =
γ1

1+
(

α

γ2

) , (5.13)

where γ1, and γ2 parameters to be determined from the fit.

(a) Fits for half-plane problem. (b) Fits for disk problem.

Figure 5.12: Fitting the model in Equation (5.13) to the estimated effective
rates of absorption in Figure 5.12.

Fitting the function in Equation (5.13) to the curves in Figure 5.12 using least

squares curve fitting tool in MATLAB, we obtained the same values for the param-

eters γ1 and γ2 for the right half-plane problem and the disk problem. Therefore,

the relation for the effective rate of absorption for the two geometry is the same

and it is

κe f f (α) =
1.0023

1+
(

α

1.6349

) . (5.14)
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Thus, we can approximate a boundary that switches between perfectly absorbing

and perfecting reflecting with a partially absorbing whose rate of absorption is

determined using this relation.
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Chapter 6

Discussion and Conclusion

We have presented a mathematical technique for identifying a partially absorbing

biological boundary, and also techniques for estimating the rate of absorption on

such a boundary. These techniques are based on the probability of finding a particle

performing Brownian motion in some region of a domain.

The first chapter of this thesis gives a brief introduction to biological bound-

aries, the kind of biological boundaries we are interested in, and some of the bi-

ological terms used in this project. We also presented a brief description of the

single particle tracking experiment that motivated this project.

In the second chapter, we derived the diffusion equation from a simple one di-

mensional random walk process and used the derived equation to set-up our mathe-

matical problem. Also in this chapter, we gave a brief introduction to a partially ab-

sorbing boundary and the Robin boundary condition, and presented some relations

between the rate of absorption on the boundary in the Robin boundary condition

and the probability of absorption on the boundary, derived by Erban and Chapman

[4], and Steven Andrews [1].

The third chapter involves deriving probability distribution functions for find-

ing a particle performing Brownian motion in some region of a two dimensional

domain. We considered an unbounded domain, and a bounded domain in rectangu-

lar and polar coordinates. For the unbounded domain, we derived the probability

distribution function for finding the particle in some region of the domain. To do

this, we assumed that there is a region of the unbounded domain that is bounded
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by an ‘imaginary’ boundary, and then derive the probability distribution function

for finding the particle in this region at time t. This boundary is imaginary be-

cause it does not restrict the motion of the particle in and out of the region. For the

bounded domain, we considered the right half-plane with an absorbing boundary at

x = 0, and a disk-shaped region also with an absorbing boundary, and then derived

the probability distribution function for finding the particle in these regions. Since

these distribution functions give us the likelihood of finding the particle of interest

in some region over time, we can fit these functions to experimental data to deter-

mine whether or not the experimental particle is experiencing a restricted motion.

In order to do this, we need to consider the scenario that best models our exper-

imental set-up and collect information such as the initial position of the particle,

its diffusion coefficient, and the suspected locations of the boundary from the ex-

periment. Substituting these pieces of information into the appropriate distribution

function gives the distribution of probability for finding the particle in the desig-

nated region over time. Using this probability distribution together with the final

position of the experimental particle, we can conclude whether or not the particle

is experiencing a restricted motion and the possibility of a boundary.

Supposing we have identified a partially absorbing boundary, the next problem

is to estimate the rate of absorption on the boundary. In the fourth chapter, we

present a technique for estimating the rate of absorption on a partially absorbing

boundary. This technique involves deriving a probability distribution function for

finding a particle performing Brownian motion in a region bounded by a partially

absorbing boundary. We considered two possible geometries: the right half-plane

and a disk-shaped region. The probability distribution functions derived for each

case contain a parameter that determines the rate of absorption on the boundary.

These distribution functions are used together with maximum likelihood estimation

to estimate that parameter based on simulated data. To do this, we first simulated

trajectories using a specified rate of absorption on the boundary, and from this

simulation, we collected the total number of particles that were absorbed on the

boundary and those remaining in the region after a specified time. This information

was substituted into the appropriate likelihood function derived using the relation

in Equation (4.39), and then the resulting function was maximized with respect to

κ to get the most probable rate of absorption on the boundary. Figures 4.6 - 4.9
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show the results of our estimates of the rate of absorption on the boundary with

standard deviation error bars for different parameter values. For Figures 4.6 and

4.8, we varied the initial position of the particle. We observe from these figures

that we were able to recover the rate of absorption on the boundary with high level

of accuracy for the cases where the particles start close the boundary, and as the

initial position of the particle moves farther away from the boundary, our estimates

become less accurate and the standard deviation increases. This is due to the fact

that when the particles start far away from the boundary, they spread out more,

therefore, it takes them longer to get to the boundary compared to when they start

closer to the boundary. In Figures 4.7 and 4.9, we fixed the initial position of the

particle and varied the rate of absorption on the boundary. We can see from these

figures that we have good estimates when the rate of absorption on the boundary is

small, and as κ increase, the accuracy of our estimates decreases and the variance

also increases.

We also looked at a scenario where the boundary of the region in which the par-

ticle is performing Brownian motion is formed by some other diffusing particles,

and as a result of the motion of the particles forming the barrier, the boundary fluc-

tuates between a perfectly reflecting boundary and partially absorbing boundaries.

To estimate the rate of absorption on the boundary, we used mean field approxima-

tion to approximate the fluctuating boundary with a partially absorbing boundary

where the rate of absorption on the boundary is the average of the fluctuating rates

of absorption. To verify that this approximation works, we simulate trajectories

in a region bounded by a fluctuating boundary, and calculate the probability that

the particle performing Brownian motion is still inside the region at time t from the

simulation. In the simulation, the boundary switches from one boundary type to an-

other at every unit time interval, and the probability calculated from it is compared

to the result obtained from the probability distribution function derived using the

mean field approximation (that is, Equation (5.4) for the half-plane problem and

Equation (5.6) for the disk problem). The comparison of the two probabilities is

shown in Figure 5.2 for the right half-plane problem and in Figure 5.3 for the disk

problem. We notice from these figures that the two result agree to a large extent,

this shows that the mean field approximation works for this scenario. Thus, we

conclude that the fluctuating boundary in this scenario can be approximated by
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a partially absorbing boundary whose rate of absorption on the boundary is the

average of the fluctuating rates of absorption.

Furthermore, we considered a scenario where the boundary switches between

two boundary types at specified time interval. The first case considered is when the

boundary switches between a perfectly reflecting boundary and a specific partially

absorbing boundary (with rate of absorption on the boundary labelled as κ2), while

the other case is when it switches between a perfectly reflecting and a perfectly

absorbing boundary. We approximate these switching boundaries with a partially

absorbing boundary, where the rate of absorption on the boundary is the rate of

absorption that best approximates the solution, given the switching on the bound-

ary, and it is called the effective rate of absorption denoted by κe f f . For each of

the two cases, we derived a mathematical relation for finding the effective rate of

absorption on the boundary a function of the switching time. To get the relation

for the first case, we simulate trajectories in a region where the boundary switches

between the two boundary types. From the simulation, we calculate the probability

that a particle performing Brownian motion in this region is still in the region at

time t, and then fit the appropriate probability distribution function to the calcu-

lated probability in order to get the rate of absorption on the boundary that best

fits the simulated result. This rate of absorption is the effective rate of absorption

on the boundary. Figure 5.6 shows the fits for several values of κ2 and different

switching time, for the half-plane problem and the disk problem. Next, we fit the

model in Equation (5.9) to the estimates in Figure 5.6 in order to get the values for

the saturation function f (α), and the rate function g(α) for each switching time α .

And lastly, we fit functions to the curves of f (α) and g(α) obtained from the pre-

vious fits. The mathematical relation obtained for the effective rate of absorption

κe f f for the right half-plane problem is given as

κe f f (α;κ2) =

(
0.8970

1+
(

α

1.7318

)) [1− exp(−(0.1875α +0.4545)κ2)] . (6.1)

And that of the disk problem is

κe f f (α;κ2) =

(
0.9344

1+
(

α

1.6515

)) [1− exp(−(0.1938α +0.4337)κ2)] , (6.2)
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where α is the switching time, and κ2 is the rate of absorption for the partially

absorbing boundary that switches.

We notice that the relations for the effective rate of absorption on the partially

absorbing boundary for the two geometries are very similar. This suggests that the

rate for this scenario is independent of the geometry of the region, rather it depen-

dent on κ2 and switching time. We believe that the slight difference in the results is

as a result of approximation errors and the stochastic nature of our approach. Thus,

in a situation where a boundary switches between a perfectly reflecting boundary

and a specific partially absorbing boundary, this boundary can be replaced with

a partially absorbing boundary where the rate of absorption on the boundary is

obtained using the relations in Equations (6.1) and (6.2) appropriately.

For the case where the boundary switches between a perfectly reflecting bound-

ary and a perfectly absorbing boundary, we used a similar approach of fitting proba-

bility distribution functions to the probabilities calculated from simulation in order

to estimate the effective rate of absorption on the boundary. We then fit a function

to these estimates to get a relation that predicts the effective rate of absorption on

the boundary as a function of the switching time. The relation obtained for the right

half-plane problem and the disk problem are exactly the same for this scenario, and

it is given in Equation (5.14). This is in agreement with the suggestion in the pre-

vious scenario of switching boundary that the effective rate of absorption on the

boundary is independent of the geometry. Therefore, we conclude that a boundary

that switches between a perfectly reflecting and a perfectly absorbing boundary

at regular time intervals can be approximated with a partially absorbing boundary

whose rate of absorption in obtained using the relation in Equation (5.14).

We believe that the techniques presented in this project will help in identifying

partially permeable biological boundaries, and also in estimating the rate of absorp-

tion on the boundaries. This will go a long way in enhancing our understanding

the motion of biological particles, and the analysis of experimental data.

6.1 Future work
Future work in this direction would be to apply the techniques presented in this

thesis to experimental data.
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For the regions we have considered in this thesis, we have assumed that the

boundaries are smooth, while in reality, biological boundaries may not be smooth.

It would be interesting to develop a technique for estimating the rate of absorption

on a rough boundary.

In addition, it would also be interesting to develop a technique for estimat-

ing the rate of transmission on a partially transmitting boundary. For a transmitting

boundary, a diffusing particle can cross the boundary from both sides of the bound-

ary. As a result of this, the boundary has two faces, each with a rate of transmission,

and these rates are not necessarily the same. Developing a technique to estimates

these rates of transmission would also be an interesting question.
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Appendix A

Supporting Materials

Below are some of the smoldyn codes used to produce the results in this thesis.

These scripts were called from MATLAB using some other scripts through which

the value of the parameters such as simulation stopping time, simulation time step,

initial number of particles, the staring position of the particles, and the different

rates of absorptions on the boundary were supplied. In addition, the data obtained

from these simulations are exported to Matlab for further processing.

A.1 Smoldyn code for partially absorbing boundary
problem

# likelihood simulation

# rectangular Geometry

graphics opengl

#graphic_iter 5

dim 2 # specifying the dimension of the system

species A # specifying particle species types

difc all 0.1 # specifying diffusion coefficient of particle

color A 1 0 0 # specifying the species color

display_size all 2.01 # specifying the display size particles
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time_start 0 # specifying starting time of simulation

time_stop T_time # specifying stopping time of simulation

time_step T_step # specifying simulation time step

### defining system boundary

boundaries 0 0 100 r

boundaries 1 0 100 r

frame_thickness 0

### designing the simulation graphics interface

start_surface Right_rectangle

action front A reflect

color back black 0.2

color front blue 0.1

panel rect +0 0 0 100

panel rect -0 100 0 100

panel rect +1 0 100 100

panel rect -1 0 0 100

end_surface

### defining the partially absorbing boundary

start_surface Boundary

rate A bsoln fsoln Kappa # specifying the rate of absorption

# on the boundary

action A front reflect

color back red 0.2

panel rect -0 0 0 100

thickness 1

end_surface

### defining simulation region of interest

start_compartment right_compt
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surface Right_rectangle

point 50 50

end_compartment

### specifying the initial number of particle (called ’total’)

### and the start position

mol total A start_point 50

### defining the output file

output_files FILEROOT_out.txt stdout

### writing the total number of molecules left in the region

### into the output file at each simulation time step

cmd N 1 molcountincmpts right_compt FILEROOT_out.txt

cmd a molcount stdout

end_file

A.2 Smoldyn code for fluctuating boundary problem
# Fluctuating boundary simulation

# rectangular Geometry

graphics opengl

#graphic_iter 5

dim 2 # specifying the dimension of the system

species A # specifying particle species types

difc all 0.1 # specifying diffusion coefficient of particle

color A 1 0 0 # specifying the species color

display_size all 2.01 # specifying the display size particles

time_start 0 # specifying starting time of simulation
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time_stop T_time # specifying stopping time of simulation

time_step T_step # specifying simulation time step

### defining system boundary

boundaries 0 0 100 r

boundaries 1 0 100 r

frame_thickness 0

### designing the simulation graphics interface

start_surface Right_rectangle

action front A reflect

color back black 0.2

color front blue 0.1

panel rect +0 0 0 100 r1

panel rect -0 100 0 100 r2

panel rect +1 0 100 100 r3

panel rect -1 0 0 100 r4

end_surface

### defining the boundary that fluctuates

start_surface Boundary

action A front reflect

color back red 0.2

panel rect -0 0 0 100 rec1

thickness 1

end_surface

## specifying an initial rate of absoprtion on the boundary

surface Boundary rate A bsoln fsoln 0

### defining simulation region of interest

start_compartment right_compt

surface Right_rectangle
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point 50 50

end_compartment

### specifying the initial number of particle (called ’total’)

### and the start position

mol total A start_point 50

### defining the output file

output_files FILEROOT_out.txt stdout

### performing the switching on the boundary

cmd @ 1 set surface Boundary rate A bsoln fsoln aa

cmd @ 2 set surface Boundary rate A bsoln fsoln bb

cmd @ 3 set surface Boundary rate A bsoln fsoln cc

cmd @ 4 set surface Boundary rate A bsoln fsoln dd

cmd @ 5 set surface Boundary rate A bsoln fsoln ee

: : : : : : : : : : : : : : : : : : : : :

. . . . . . . . . . . . . . . . . . . . .

cmd @ 76 set surface Boundary rate A bsoln fsoln a75

cmd @ 77 set surface Boundary rate A bsoln fsoln a76

cmd @ 78 set surface Boundary rate A bsoln fsoln a77

cmd @ 79 set surface Boundary rate A bsoln fsoln a78

cmd @ 80 set surface Boundary rate A bsoln fsoln a79

### writing the total number of molecules left in the region

### into the output file at each simulation time step

cmd N 1 molcountincmpts right_compt FILEROOT_out.txt

end_file
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