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Abstract

Fluorescence Recovery After Photobleaching (FRAP) is a technique for estimating the mobility of flu-
orescently tagged molecules in living cells. The most widely used tool for FRAP experiments is the
Confocal Laser Scanning Microscope (CLSM) which allows the bleaching of arbitrary regions. During
FRAP experiments with the CLSM, there is usually a trade-off between the time-step at which data are
acquired and the size of the observation region. In this project, we developed several one-dimensional
and two-dimensional models for analysing FRAP data. We used these models to simulate FRAP recov-
ery curves and then used the least square method to estimate the diffusion coefficient from the data
generated. In addition to this, we provided the optimal locations in the bleached region and the optimal
timing for acquiring data during FRAP experiments in order to reduce the effect of the trade-off on the
accuracy of the data acquired.
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1. Introduction

1.1 Fluorescence recovery after photobleaching

Fluorescence Recovery After Photobleaching (FRAP) is a technique for studying the mobility of molecules
in different media such as living cells. It was developed 40 years ago and was first used to study the lateral
diffusion of proteins and lipids in cell membranes. Lateral diffusion in cell membranes is well-established
and varies according to the physiological state of living cells (Axelrod et al., 1976).

Photobleaching occurs when there is an irreversible breakdown of fluorescence in fluorophores as a
result of exposure to high intensity laser stimulation by wave lengths close to the excitation peak of
the fluorophores. FRAP involves the bleaching of fluorescence in a small region of a surface containing
fluorescent molecules, and then monitoring the random movement of molecules in and out of the
bleached region. This movement increases the fluorescence intensity inside the bleached region until an
equilibrium level of intensity is reached (Braga et al., 2004).

The classical method for FRAP experiments involved the use of non-scanning microscopes where bleach-
ing is performed with a stationary laser beam that is focused on the samples. Nowadays, the most com-
monly used tool for performing FRAP experiments is the Confocal Laser Scanning Microscope (CLSM)
which is equipped with features such as acoustic-optic tunable filter (AOTF) that enables the bleaching
of arbitrary regions in the sample. This feature makes the CLSM an excellent tool for performing FRAP
experiments. When using CLSM, the region to be bleached, the pattern and degree of bleaching are
specified in the software, after which the microscope scans the laser beam over the region in a sequen-
tial pattern point-by-point and line-by-line, while modulating the intensity of the beam according to the
specified pattern (Braeckmans et al., 2003). The CLSM uses its laser to acquire images at low-intensity
and for bleaching at high-intensity.

In a typical FRAP experiment to determine the mobility of specific proteins on a living cell surface,
the protein of interest is fluorescently tagged. Images of the labelled protein are acquired at low-laser
intensity in order to determine its pre-bleach fluorescent intensity. Next, high-laser intensity is used to
bleach a small region of the cell surface for a short time. This region is referred to as the region of
interest (ROI). After the bleaching, images of the fluorescence recovery process in the bleached region
are acquired at low-laser intensity and at specified time-steps. The total time of the experiment depends
on the observed rate of recovery. The higher the mobility of the labelled protein, the shorter the recovery
time and thus, the shorter the time of the experiment.

The data obtained from FRAP experiments can be used to estimate the diffusion coefficient of the
labelled proteins, and the percentage of proteins that are immobile. The average diffusivity of the
protein is represented by the intensity of the recovered fluorescence. The form of recovery depends on
factors such as the mobility of the labelled protein, the size and shape of the region of interest, and the
amount of bleaching.

Figure 1.1: FRAP experiment with 100% recovery.
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Figure 1.2: FRAP experiment with immobile fraction.

Figure 1.1 and 1.2 give a pictorial description of a typical FRAP experiment. Figure 1.1 involves a
situation where all the proteins in the bleached region are able to move out of the region thereby leading
to 100% recovery while in Figure 1.2 we have a fraction of the protein that are unable to diffuse out of
the bleached region leading to the remaining darker spot in the fourth image of the figure.

Figure 1.3: Recovery curve of FRAP experiment.

Figure 1.3 is the graphical representation of a typical data obtained from an ideal FRAP experiment.
In this figure, Fi is the fluorescence intensity before photobleaching, F0 is the fluorescence intensity
immediately after photobleaching and F∞ is the fluorescence intensity after a long recovery time. The
slope of the curve is determined by the diffusivity of the labelled protein. The steeper the slope, the
faster the recovery and thus, the higher the diffusion coefficient.

There are technical problems encountered when using the CLSM for FRAP experiments. First, the laser
take a long time to bleach a rectangular strip. As a result of this, recovery may have started in some
parts of the bleached region while bleaching is going on at other parts. There is a trade-off between the
speed of data acquisition and the size of the bleached region. In addition, the low-laser intensity used
for data acquisition causes background bleaching which may affect the accuracy of the data acquired.

In this research project, we developed one-dimensional and two-dimensional models for analysing FRAP
data considering different bleach spots. We used these models to simulate FRAP data and then used
the least square method to estimate the diffusion coefficient from the simulated data. We aimed at
optimizing the locations in the bleached region and the timing for data acquisition in FRAP experiments
in order to estimate the protein’s diffusion coefficient as accurately as possible.
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1.2 Diffusion coefficient

Diffusion from a molecular point of view, is based on the thermal motion of particles such as liquid and
gas at temperatures above the absolute zero temperature, and describes the net flux of molecules from
a region of high concentration to a region of low concentration. Diffusion is of great importance in
disciplines such as chemistry, physics and biology. An important application of diffusion in cell biology
is in the transport of materials, e.g the transport of amino acids within cells.

The diffusion coefficient of a substance is the rate at which a mass of the substance diffuses through
a unit time at a concentration gradient of unity . It indicates the diffusional mobility of a substance
and depends on some properties of the substance such as the sizes of its molecules among others. The
higher the diffusion coefficient of a substance, the higher its diffusional mobility.

1.3 Mobile and Immobile fraction

In a FRAP experiment, it is expected that there will be fluorescence recovery in the bleached region.
However, it is often difficult to have 100% fluorescence recovery after bleaching. This is as a result of
some molecules in the bleached region that are unable to move out of the region. The fraction of these
molecules is known as the immobile fraction. On the other hand, the fraction of the molecules that are
able to diffuse out of the bleached region is known as the mobile fraction and it is defined as

Mf =
F∞ − F0

Fi − F0
(1.3.1)

where F∞, Fi, and F0 are as defined in Figure 1.1. Thus, the immobile fraction is 1−Mf .

1.4 Least square method

The Least square method is a popular technique in statistics for data fitting. It is widely used to estimate
the numerical values of the parameters used to fit a function to a set of data. The least square method
is categorised into two: the ordinary or linear least squares and the non-linear least squares. In this
project, we used the ordinary least square method for estimating the diffusion coefficient from FRAP
data. This method involves minimizing the sum of squared difference over a set of possible values of
the diffusion coefficient. It is given as

ssd(D) =
N∑
i=1

[di − (1− f)H(D, ti)]
2 (1.4.1)

where D is a possible values of the diffusion coefficient, f is the immobile fraction, N is the number of
data points, di are the FRAP data, and H(D, ti) are the intensity values from the model.



2. Model Derivation

In this chapter, we derive several Partial Differential Equations (PDEs) to model the fluorescence in-
tensity in the bleached region of a cell during FRAP experiment. These PDEs vary in dimension and
depend on the geometry of the bleach region under consideration in the experiment. The equations were
solved using different methods and with FRAP like initial conditions. We then integrate the solutions
of these equations over the entire bleached region to get a function which can be used to predict the
fluorescence intensity in the bleached region.

2.1 Derivation of the one-dimensional models

We begin by deriving the one-dimensional models which are used to model the bleaching of a rectangular
strip. These models are developed by using the one-dimensional diffusion equation,

1

D

∂f(x, t)

∂t
=
∂2f(x, t)

∂x2
(2.1.1)

where f(x, t) is the fluorescence intensity at position x and time t, and D is the diffusion coefficient.

Figure 2.1: A rectangular strip bleach.

We developed these models using two different approaches which are the Fourier transforms and Fourier
series approach.

2.1.1 Fourier transform approach. This approach involves using the Fourier transforms in solving
Equation (2.1.1). In this approach, we assumed that the rectangular strip is infinite and that the bleached
region has a width wb ([−a, a]). We also assumed that the initial fluorescent intensity everywhere on
the strip is unity except in the bleached region where the intensity is zero. This initial condition can be
written as

f(x, 0) = φ(x) =

{
0, −a ≤ x ≤ a
1, otherwise.

(2.1.2)

First, let us define the Fourier transform of f(x, t) as

F [f(x, t)] = f̃(k, t) =

∫ ∞
−∞

f(x, t)e−ikx dx , (2.1.3)

Then from Equation (2.1.1), we have∫ ∞
−∞

∂f

∂t
e−ikx dx = D

∫ ∞
−∞

∂2f

∂x2
e−ikx dx

∂f̃

∂t
= −Dk2f̃ . (2.1.4)

4
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Also, taking the Fourier transform of the initial condition, we obtain

f̃(k, 0) = φ̃(k) . (2.1.5)

We solved Equation (2.1.4), to get

f̃(k, t) = Ae−Dk
2t (A is a constant) (2.1.6)

and then we apply the initial condition in Equation (2.1.5) to the solution in Equation (2.1.6),

f̃(k, t) = φ̃(k)e−Dk
2t . (2.1.7)

From the products and convolution properties of Fourier transforms,

F [h ∗ g] = F [h] ·F [g] = h̃ · g̃ (2.1.8)

where

(h ∗ g)(x) =

∫ ∞
−∞

h(ζ)g(x− ζ) dζ . (2.1.9)

Also, we know that

F

e−x2a2
a
√
π

 = e−
k2a2

4 .

If we let a2/4 = Dt, then a =
√

4Dt and so,

F

 e−
x2

4Dt

√
4Dtπ

 = e−Dk
2t . (2.1.10)

Now, applying Equations (2.1.8), (2.1.9) and (2.1.10) to Equation (2.1.7), we have

f(x, t) =

∫ ∞
−∞

φ(ζ)

e− (x−ζ)2
4Dt

√
4Dtπ

 dζ ,

f(x, t) =
1√

4Dtπ

∫ ∞
−∞

φ(ζ)e
−(x−ζ)2

4Dt dζ , (2.1.11)

Applying the initial condition in Equation (2.1.2) to Equation (2.1.11), we obtained

f(x, t) =

∫ −a
−∞

e−
(x−ζ)2
4Dt

√
4Dtπ

dζ +

∫ ∞
a

e−
(x−ζ)2
4Dt

√
4Dtπ

dζ . (2.1.12)

If we let (ζ−x)√
4Dt

= s, then dζ =
√

4Dt ds. Substituting for s in Equation (2.1.12), we have

f(x, t) =
1√
π

∫ −(a+x)√
4Dt

−∞
e−s

2
ds+

1√
π

∫ ∞
(a−x)√

4Dt

e−s
2

ds ,
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and since

1√
π

∫ ∞
−∞

e−s
2

ds = 1 ,

it follows that

f(x, t) =

(
1− 1√

π

∫ ∞
−(a+x)√

4Dt

e−s
2

ds

)
+

1√
π

∫ ∞
(a−x)√

4Dt

e−s
2

ds

= 1− 1

2
erfc

(
−(a+ x)√

4Dt

)
+

1

2
erfc

(
a− x√

4Dt

)

= 1− 1

2

(
1 + erf

(
a+ x√

4Dt

))
+

1

2

(
1− erf

(
a− x√

4Dt

))
.

Simplifying, we obtain

f(x, t) = 1− 1

2
erf

(
a+ x√

4Dt

)
− 1

2
erf

(
a− x√

4Dt

)
(2.1.13)

where erf is the usual error function.

This is the solution of the diffusion equation in Equation (2.1.1) with respect to our initial condition.

Next, we integrate the function f(x, t) as defined in Equation (2.1.13) over the entire bleached region
to get

H(t,D) =
2
√
Dt√
π

[
1− exp

(
−a2

Dt

)]
+ 2a

[
erf

(
a√
Dt

)
− 1

]
.

Since wb = 2a, we have

H(t,D) =
2
√
Dt√
π

[
1− exp

(
−w2

b

4Dt

)]
+ wb

[
erf

(
wb

2
√
Dt

)
− 1

]
(2.1.14)

where wb is the width of the bleach region and D is the diffusion coefficient of the proteins.

This is the model for the Fourier transforms approach.

2.1.2 Fourier Series approach. In this approach, we used separation of variables and Fourier series
method to solve the diffusion equation in Equation (2.1.1). Here, we assumed that the rectangular strip
is of finite length Lc = 2L ([−L,L]) and the bleached region is of width wb = 2a ([−a, a] ⊂ [−L,L]).
In developing this model, we also assumed that the boundaries of the strip satisfy the Neumann boundary
conditions below.

fx(−L, t) = fx(L, t) = 0 . (2.1.15)

We begin by using the method of separation of variable. Let

f(x, t) = X(x)T (t) .



Section 2.1. Derivation of the one-dimensional models Page 7

Then Equation (2.1.1) becomes,

1

D
X(x)T ′(t) = X ′′(x)T (t)

1

D

T ′(t)

T (t)
=
X ′′(x)

X(x)
.

This implies that there exists a constant λ such that

1

D

T ′(t)

T (t)
=
X ′′(x)

X(x)
= λ , (2.1.16)

From Equation (2.1.16), we obtained the following ODEs,

T ′(t)− λDT (t) = 0 (2.1.17)

X ′′(x)− λX(x) = 0 , (2.1.18)

and from the boundary conditions in Equation (2.1.15), we have the following boundary conditions

X ′(−L) = 0 and X ′(L) = 0 , (2.1.19)

Now, we can solve the second order ODE in Equation (2.1.18) together with the boundary conditions
in Equation (2.1.19). For this equation, we must have λ < 0 for a non-trivial solution. Let λ = −α2,
then the general solution of Equation (2.1.18) is

X(x) = A cosαx+B sinαx , (A and B are constants) .

Applying the boundary conditions in Equation (2.1.19), we have B = 0 and

αn =
nπ

L
, n ≥ 1 .

Since λ = −α2, we have infinitely many value of λ

λn = −
(nπ
L

)2
, n ≥ 1 ,

and thus, we have an infinite set of solutions

Xn(x) = An cos
(nπ
L
x
)
, n ≥ 1 .

Substituting the value of λ into Equation (2.1.17), we have

T ′n(t) +D
(nπ
L

)2
Tn(t) = 0 , n ≥ 1

and the solutions are

Tn(t) = Cne
−D(nπL )

2
t , n ≥ 1 (Cn are constants) . (2.1.20)
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Recall, f(x, t) = X(x)T (t), therefore, fn(x, t) = Xn(x)Tn(t). Thus,

fn(x, t) = AnCn cos
(nπ
L
x
)
e−D(nπL )

2
t

fn(x, t) = an cos
(nπ
L
x
)
e−D(nπL )

2
t , (AnCn = an) .

Using the principle of superposition, we have

f(x, t) =
a0
2

+
∑
n≥1

an cos
(nπ
L
x
)
e−D(nπL )

2
t . (2.1.21)

Here, our initial condition is

f(x, 0) = φ(x) =

{
0, −a ≤ x ≤ a
1, otherwise.

(2.1.22)

Applying this initial condition, we have

a0
2

+
∑
n≥1

an cos
(nπ
L
x
)

= φ(x) . (2.1.23)

To get a0, we integrate each term of this equation over the interval [−L,L],∫ L

−L

a0
2

dx+
∑
n≥1

an

∫ L

−L
cos
(nπ
L
x
)

dx =

∫ L

−L
φ(x) dx ,

from this equation, we have

a0 =
1

L

∫ L

−L
φ(x) dx .

Implementing the step function in the initial condition in Equation (2.1.22) gives

a0 = 2
(

1− a

L

)
. (2.1.24)

Similarly, to get an, we multiply each term of Equation (2.1.23) by cos
(
nπ
L x
)

and then integrate over
[−L,L]

a0
2

∫ L

−L
cos
(nπ
L
x
)

dx+
∑
n≥1

an

∫ L

−L
cos
(nπ
L
x
)

cos
(nπ
L
x
)

dx =

∫ L

−L
φ(x) cos

(nπ
L
x
)

dx .

Since ∫ L

−L
cos2

(nπ
L
x
)

dx = L and

∫ L

−L
cos
(nπ
L
x
)

dx = 0,

we have

an =
1

L

∫ L

−L
φ(x) cos

(nπ
L
x
)

dx .
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Also, implementing the step function in the initial condition in Equation (2.1.22) gives

an = − 2

nπ
sin
(nπa
L

x
)
. (2.1.25)

Therefore,

f(x, t) =
(

1− a

L

)
−
∑
n≥1

(
2

nπ
sin
(nπa
L

))
cos
(nπ
L
x
)
e−D(nπL )

2
t . (2.1.26)

Next, we integrate the function f(x, t) as defined in Equation (2.1.26) over the entire bleached region,

H(t,D) =

∫ a

−a

(
1− a

L

)
dx−

∫ a

−a

∑
n≥1

(
2

nπ
sin
(nπa
L

))
e−D(nπL )

2
t cos

(nπ
L
x
)

dx ,

evaluating the integral and simplifying, we have

H(t,D) = 2a
(

1− a

L

)
−
∑
n≥1

4L

n2π2
sin2

(nπa
L

)
e−D(nπL )

2
t .

Since the length of the cell Lc = 2L and the width of the bleached region wb = 2a , then we can write
this equations as

H(t,D) = wb

(
1− wb

Lc

)
− 2Lc

π2

∑
n≥1

1

n2
sin2

(
nπ wb
Lc

)
e
−D

(
2nπ
Lc

)2
t
. (2.1.27)

This is the model for the Fourier Series approach.

2.2 Derivation of the two-dimensional models

For the two-dimensional models, we considered the disc bleach spot (Figure 2.2) and the square bleach
spot (Figure 2.3). These models can be used to model the mobility of protein in a cell membrane.

2.2.1 Disk bleach spot. In developing a model for this bleach spot, we consider the diffusion equation
in the cylindrical coordinate given as

1

r

∂V

∂r
+
∂2V

∂r2
+

1

r2
∂2V

∂θ2
=

1

D

∂V

∂t
, (2.2.1)

where V (r, θ, t) is the fluorescence intensity on the disc at time t and 0 ≤ r ≤ a is the radius of the
disc.

With the boundary conditions,

|V (0, θ, t)| <∞ , V (r, 0, t) = V (r, 2π, t) , and Vθ(r, 0, t) = Vθ(r, 2π, t) , 0 ≤ r ≤ a (2.2.2)

V (a, θ, t) = 1 , 0 ≤ θ ≤ 2π and t ≥ 0 . (2.2.3)
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Figure 2.2: A disc bleach spot.

We assumed that the initial fluorescent intensity everywhere on the cell surface is unity except in the
interior part of the disc where it is zero as a result of bleaching, i.e

V (r, θ, 0) = φ(r, θ) = 0 , 0 ≤ r < a (2.2.4)

and that the intensity at the edge of the disc is unity at all time (this is satisfied by the boundary
condition in Equation (2.2.3)).

We begin by partitioning the desired solution into two solutions as shown below,

V (r, θ, t) = w(r, θ) + u(r, θ, t) (2.2.5)

where w(r, θ) is the steady-state solution and u(r, θ, t) is the time-dependent solution.

In our case, we make the steady-state solution to be a constant (w(r, θ) = 1), therefore,

V (r, θ, t) = 1 + u(r, θ, t) . (2.2.6)

Substituting V (r, θ, t) as defined in Equation (2.2.6) into Equation (2.2.1), we have

1

r

∂u

∂r
+
∂2u

∂r2
+

1

r2
∂2u

∂θ2
=

1

D

∂u

∂t
. (2.2.7)

This equation satisfies the boundary conditions,

|u(0, θ, t)| <∞ , u(r, 0, t) = u(r, 2π, t) , and uθ(r, 0, t) = uθ(r, 2π, t) , 0 ≤ r ≤ a , (2.2.8)

u(a, θ, t) = 0 , 0 ≤ θ ≤ 2π , t ≥ 0 . (2.2.9)

Now, we can solve Equation (2.2.7) together with the boundary conditions in Equations (2.2.8) and
(2.2.9). Using the method of separation of variables, let

u(r, θ, t) = R(r)Θ(θ)T (t) ,

then Equation (2.2.7) becomes,

1

r
R′(r)Θ(θ)T (t) +R′′(r)Θ(θ)T (t) +

1

r2
R(r)Θ′′(θ)T (t) =

1

D
R(r)Θ(θ)T ′(t) .



Section 2.2. Derivation of the two-dimensional models Page 11

We divide each term of this equation by R(r)Θ(θ)T (t), to obtain

1

r

R′(r)

R(r)
+
R′′(r)

R(r)
+

1

r2
Θ′′(θ)

Θ(θ)
=

1

D

T ′(t)

T (t)
,

and this implies that there exists a constant −α2 such that

1

r

R′(r)

R(r)
+
R′′(r)

R(r)
+

1

r2
Θ′′(θ)

Θ(θ)
=

1

D

T ′(t)

T (t)
= −α2 .

From this equation, we have

1

D

T ′(t)

T (t)
= −α2

T ′(t)+α2DT (t) = 0

and

1

r

R′(r)

R(r)
+
R′′(r)

R(r)
+

1

r2
Θ′′(θ)

Θ(θ)
= −α2

1
rR
′(r)Θ(θ) +R′′(r)Θ(θ) + 1

r2
R(r)Θ′′(θ)

R(r)Θ(θ)
= −α2 .

Multiply both sides of this equation by r2 to get

rR′(r) + r2R′′(r) + r2α2R(r)

R(r)
= −Θ′′(θ)

Θ(θ)
.

This also implies that there exists another constant β2 such that

rR′(r) + r2R′′(r) + r2α2R(r)

R(r)
= −Θ′′(θ)

Θ(θ)
= β2 , (2.2.10)

Form Equation (2.2.10), we have

rR′(r) + r2R′′(r) + r2α2R(r)

R(r)
= β2 .

Simplifying this equation, we obtain

r2R′′(r) + rR′(r) + (r2α2 − β2)R(r) = 0 .

Also, form Equation (2.2.10), we have

−Θ′′(θ)

Θ(θ)
= β2

Θ′′(θ) + β2Θ(θ) = 0
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Therefore, the PDE in Equation (2.2.7) has been transform into the following ODEs

T ′(t)+α2DT (t) = 0 , (2.2.11)

r2R′′(r) + rR′(r)+(r2α2 − β2)R(r) = 0 , (2.2.12)

Θ′′(θ)+β2Θ(θ) = 0 . (2.2.13)

From the boundary conditions in Equation (2.2.8), we have

u(r, 0, t) = u(r, 2π, t) =⇒ R(r) Θ(0)T (t) = R(r) Θ(2π)T (t) =⇒ Θ(0) = Θ(2π)

uθ(r, 0, t) = uθ(r, 2π, t) =⇒ R(r) Θ′(0)T (t) = R(r) Θ′(2π)T (t) =⇒ Θ′(0) = Θ′(2π) .

Solving the second order ODE in Equation (2.2.13), we obtain the general solution

Θ(θ) = A cos θβ +B sin θβ , (A and B are constants) .

Applying the boundary conditions

Θ(0) = Θ(2π) and Θ′(0) = Θ′(2π) ,

we have

A = A cos 2πβ and B = B cos 2πβ .

For these equations to hold, β must be an integer, therefore, β = n , n = 0, 1, 2, . . . . Thus, the
solution of the boundary value problem is

Θn(θ) = An cosnθ +Bn sinnθ , n = 0, 1, 2, . . .

Now, let us consider Equation (2.2.12)

r2R′′(r) + rR′(r)+(r2α2 − β2)R(r) = 0 .

Since β = n, we have

r2R′′n(r) + rR′n(r)+(r2α2 − n2)Rn(r) = 0 , n = 0, 1, 2, . . . (2.2.14)

We can use the method of Frobenius to obtain the general solution

Rn(r) = Cn Jn(αr) + En Yn(αr) (2.2.15)

where Cn and En are constants,

Jn(αr) =

∞∑
k=0

(−1)k

k! Γ(k + n+ 1)

(αr
2

)2k+n
and J−n(αr) =

∞∑
k=0

(−1)k

k! Γ(k − n+ 1)

(αr
2

)2k−n

are Bessel functions of the first kind of order n and order −n respectively.

Yn(αr) =
cos(nπ)Jn(αr)− J−n(αr)

sin(nπ)
, αr > 0
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is a Bessel function of the second kind of order n.

From the boundary conditions |u(0, θ, t)| <∞ and u(a, θ, t) = 0, we derived |R(0)| <∞ and R(a) = 0.
We need to apply these boundary conditions to the solution in Equation (2.2.15).

For |R(0)| < ∞, we know that |Jn(αr)| ≤ 1 for n = 0, 1, 2, . . . . But as r −→ 0, Yn(αr) −→ −∞.
Therefore, for the condition |R(0)| < ∞ to hold, En must be zero and so, Rn(r) = Cn Jn(αr). For
R(a) = 0,

Rn(a) = CnJn(αa) = 0

Cn 6= 0, ∴ Jn(αa) = 0 .

Since the Bessel function behaves in a sinusoidal way, Jn(αa) = 0 for infinitely many α for each n.
That is

Jn(αnia) = 0 for i = 1, 2, . . .

where αni is the ith zero of the Bessel function of order n.

Rni(r) = Cni Jn(αnir) n = 0, 1, 2, . . . , i = 1, 2, . . .

From Equation (2.2.11), we have

T ′ni(t) + αniDTni(t) = 0 .

Solving this equation, we obtain

Tni(t) = Gnie
−α2

niDt (Gni, constant).

Recall, u(r, θ, t) = R(r)Θ(θ)T (T ), therefore, uni(r, θ, t) = Rni(r)Θn(θ)Tni(T ). Thus,

uni(r, θ, t) = CniJn(αnir)(An cosnθ +Bn sinnθ)Gnie
−α2

niDt. (2.2.16)

Using the principle of superposition, we have

u(r, θ, t) =
∞∑
n=0

∞∑
i=0

CniJn(αnir)(An cosnθ +Bn sinnθ)Gnie
−α2

niDt

u(r, θ, t) =

∞∑
n=0

∞∑
i=0

Jn(αnir)(ani cosnθ + bni sinnθ)e−α
2
niDt (ani = CniAn, bni = CniBn) .

We recall from Equation (2.2.6) that

V (r, θ, t) = 1 + u(r, θ, t) .

Therefore,

V (r, θ, t) = 1 +
∞∑
n=0

∞∑
i=0

Jn(αnir)(ani cosnθ + bni sinnθ)e−α
2
niDt. (2.2.17)
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We assumed that the distribution of fluorescence intensity on the disc is symmetric and does not depend
on the angle θ, therefore, the solution of Equation (2.2.1) becomes:

V (r, t) = 1 +

∞∑
i=0

di J0(αir)e
−α2

iDt (di, constant) (2.2.18)

and the initial condition in Equation (2.2.4) becomes

V (r, 0) = φ(r) = 0 , 0 ≤ r < a (2.2.19)

Now, let us apply the initial condition in Equation (2.2.19) to the solution in Equation (2.2.18). Applying
this conditions, we have

1 +

∞∑
i=0

di J0(αir) = 0 .

If we then multiply both sides of this result by rJ0(αir) and integrate from 0 to a,∫ a

0
r J0(αir)di J0(αir) dr = −

∫ a

0
r J0(αir)dr

di =
−
∫ a
0 r J0(αir)dr∫ a

0 r [J0(αir)]
2 dr

=
−2

a αi J1(αi a)
.

Therefore,

V (r, t) = 1−
∞∑
i=0

(
2

a αi J1(αi a)

)
J0(αir) e

−α2
iDt .

Next, we integrate the function V (r, t) over the entire bleached region (the disc),

H(t,D) =

∫ a

0
2πr dr−

∫ a

0

∞∑
i=0

2πr

(
2

a αi J1(αi a)

)
J0(αir) e

−α2
iDt dr

= 2π

∫ a

0
r dr−

∞∑
i=0

(
4π

a αi J1(αi a)

)
e−α

2
iDt

∫ a

0
rJ0(αir) dr

= 2π

[
r2

2

]a
0

−
∞∑
i=0

4πe−α
2
iDt

a αi J1(αi a)

(
aJ1(αi a)

αi

)
.

Simplifying this equation, we get

H(t,D) = a2π −
∞∑
i=0

4π

α2
i

e−α
2
iDt

where a is the radius of the disc and αi is the ith zero of the Bessel function of the first kind of order
zero.

This function can be used to model the FRAP experiment with a disc bleach spot.
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Figure 2.3: A square bleach spot.

2.2.2 Square bleach spot. In deriving the model for the square bleach spot, we used the two-dimensional
diffusion equation in xy coordinates given by

1

D

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
(2.2.20)

where u(x, y, t) is the fluorescence intensity at position (x, y) and time t, and D is the diffusion coeffi-
cient.

We assumed the surface of the cell is a square with sides Lc = 2L ([−L,L]× [−L,L]) and the bleached
region is a smaller square on the surface of the cell with sides Lb = 2a ([−a, a] × [−a, a]). We also
assumed the boundaries of the cell satisfies the Neumann boundary conditions,

ux(−L, y, t) = ux(L, y, t) = 0 (2.2.21)

uy(x,−L, t) = uy(x, L, t) = 0 ,

and that the initial fluorescence intensity on the cell surface is unity everywhere except in the bleached
region where the intensity is zero. This can be written as

u(x, y, 0) = φ(x, y) =

{
0, −a ≤ x ≤ a , −a ≤ y ≤ a
1, otherwise.

(2.2.22)

We begin by using the method of separation of variables. Let

u(x, y, t) = X(x)Y (y)T (t) ,

then Equation (2.2.20) becomes

1

D
X(x)Y (y)T ′(t) = X ′′(x)Y (y)T (t) +X(x)Y ′′(y)T (t) .

Dividing each term of this equation by X(x)Y (y)T (t), we obtain

1

D

T ′(t)

T (t)
=
X ′′(x)

X(x)
+
Y ′′(y)

Y (y)
.
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Let

1

D

T ′(t)

T (t)
=
X ′′(x)

X(x)
+
Y ′′(y)

Y (y)
= −(α2 + β2) . (2.2.23)

From this equation, we have

1

D

T ′(t)

T (t)
= −(α2 + β2) ,

T ′(t) + (α2 + β2)DT (t) = 0 .

Also, from Equation (2.2.23),

X ′′(x)

X(x)
+
Y ′′(y)

Y (y)
= −(α2 + β2)

X ′′(x)

X(x)
+ α2 = −

(
Y ′′(y)

Y (y)
+ β2

)
.

For this equation to hold, both sides of the equation must be equal to zero. That is,

X ′′(x)

X(x)
+ α2 = 0 and

Y ′′(y)

Y (y)
+ β2 = 0

X ′′(x) + α2X(x) = 0 Y ′′(y) + β2Y (y) = 0 .

We have transformed the PDE in Equation (2.2.20) into the following ODEs

T ′(t) + (α2 + β2)DT (t) = 0 (2.2.24)

X ′′(x) + α2X(x) = 0 (2.2.25)

Y ′′(y) + β2Y (y) = 0 . (2.2.26)

From the boundary conditions in Equation (2.2.21), we have

X ′(−L) = X ′(L) = 0 (2.2.27)

Y ′(−L) = Y ′(L) = 0 . (2.2.28)

Now, let us consider the ODE in Equation (2.2.25). The general solution of this equation is

X(x) = A cosαx+B sinαx , (A and B are constants)

Applying the boundary conditions in Equation (2.2.27) to this solution, we have

B = 0 and αn =
nπ

L
, n ≥ 1

∴ Xn(x) = An cos
(nπ
L
x
)
, n ≥ 1 . (2.2.29)

Similarly, the general solution of Equation (2.2.26) is

Y (y) = C cosβy +G sinβy , (C and G are constants)

and applying the boundary conditions in Equation (2.2.28), we have

G = 0 and βm =
mπ

L
, m ≥ 1

∴ Ym(x) = Cm cos
(mπ
L
y
)
, m ≥ 1 . (2.2.30)
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Substituting αn = nπ
L and βm = mπ

L into Equation (2.2.24), we obtain

T ′n,m(t) +D

((nπ
L

)2
+
(mπ
L

)2)
Tn,m(t) = 0 , n,m ≥ 1

and the solution of this equation is

Tn,m(t) = En,me
−D π2

L2 (n2+m2)t , n,m ≥ 1. (2.2.31)

Recall that u(x, y, t) = X(x)Y (y)T (t), therefore, un,m(x, y, t) = Xn(x)Ym(y)Tn,m(t). Substituting
the results in Equations (2.2.29), (2.2.30) and (2.2.31) into this equation,

un,m(x, y, t) = An cos
(nπ
L
x
)
Cm cos

(mπ
L
y
)
En,me

−D π2

L2 (n2+m2)t .

Using the principle of superposition,

u(x, y, t) = u0,0(x, y, t) +
∑
n≥1

un,0(x, y, t) +
∑
m≥1

u0,m(x, y, t) +
∑
n≥1

∑
m≥1

un,m(x, y, t)

u(x, y, t) = a0,0 +
∑
n≥1

an,0 cos
(nπ
L
x
)
e−D

π2

L2 n
2t +

∑
m≥1

a0,m cos
(mπ
L
y
)
e−D

π2

L2m
2t

+
∑
n≥1

∑
m≥1

An cos
(nπ
L
x
)
Cm cos

(mπ
L
y
)
En,me

−D π2

L2 (n2+m2)t .

Therefore, the general solution of the PDE in Equation (2.2.20) is

u(x, y, t) = a0,0 +
∑
n≥1

an,0 cos
(nπ
L
x
)
e−D

π2

L2 n
2t +

∑
m≥1

a0,m cos
(mπ
L
y
)
e−D

π2

L2m
2t

+
∑
n≥1

∑
m≥1

an,m cos
(nπ
L
x
)

cos
(mπ
L
y
)
e−D

π2

L2 (n2+m2)t , (AnCmEn,m = an,m)

(2.2.32)

Next, we apply the initial condition in Equation (2.2.22). This initial condition can be written in the
form

u(x, y, 0) = φ(x, y) =



1, −L ≤ x < −a , −L ≤ y ≤ L
1, −a ≤ x ≤ a , −L ≤ y < −a
0, −a ≤ x ≤ a , −a ≤ y ≤ a
1, a < x ≤ L , −L ≤ y ≤ L
1, −a ≤ x ≤ a , a < y ≤ L

(2.2.33)

First, we apply the initial condition as function of φ(x, y),

u(x, y, 0) = a0,0 +
∑
n≥1

an,0 cos
(nπ
L
x
)

+
∑
m≥1

a0,m cos
(mπ
L
y
)

+
∑
n≥1

∑
m≥1

an,m cos
(nπ
L
x
)

cos
(mπ
L
y
)

= φ(x, y) . (2.2.34)
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To get a00, we integrate each term of the equation over the square ([−L,L]× [−L,L])∫ L

−L

∫ L

−L
a0,0 dx dy +

∑
n≥1

an,0

∫ L

−L

∫ L

−L
cos
(nπ
L
x
)

dx dy

+
∑
m≥1

a0,m

∫ L

−L

∫ L

−L
cos
(mπ
L
y
)

dx dy

+
∑
n≥1

∑
m≥1

an,m

∫ L

−L

∫ L

−L
cos
(nπ
L
x
)

cos
(mπ
L
y
)

dx dy =

∫ L

−L

∫ L

−L
φ(x, y) dx dy . (2.2.35)

Since ∫ L

−L
cos
(nπ
L
x
)

dx = 0 and

∫ L

−L
cos
(nπ
L
y
)

dy = 0 , (2.2.36)

Equation (2.2.35), reduces to∫ L

−L

∫ L

−L
a0,0 dx dy =

∫ L

−L

∫ L

−L
φ(x, y) dx dy

a0,0 =
1

4L2

∫ L

−L

∫ L

−L
φ(x, y) dx dy .

Implementing the step function in the initial condition in Equation (2.2.33), we have

a0,0 =
1

4L2

[∫ −a
−L

∫ L

−L
1 dx dy +

∫ a

−a

∫ −a
−L

1 dx dy +

∫ a

−a

∫ a

−a
0 dx dy

+

∫ L

a

∫ L

−L
dx dy +

∫ a

−a

∫ L

a
1 dx dy

]
a0,0 = 1− a2

L2
.

To get an,0, we multiply each term of Equation (2.2.34) by cos
(
nπ
L x
)

and then integrate over the square
([−L,L]× [−L,L]),∫ L

−L

∫ L

−L
a0,0 cos

(nπ
L
x
)

dx dy +
∑
n≥1

an,0

∫ L

−L

∫ L

−L
cos2

(nπ
L
x
)

dx dy

+
∑
m≥1

a0,m

∫ L

−L

∫ L

−L
cos
(nπ
L
x
)

cos
(mπ
L
y
)

dx dy

+
∑
n≥1

∑
m≥1

an,m

∫ L

−L

∫ L

−L
cos2

(nπ
L
x
)

cos
(mπ
L
y
)

dx dy

=

∫ L

−L

∫ L

−L
φ(x, y) cos

(nπ
L
x
)

dx dy . (2.2.37)

Based on the results in Equation (2.2.36), Equation (2.2.37) reduces to

an,0

∫ L

−L

∫ L

−L
cos2

(nπ
L
x
)

dx dy =

∫ L

−L

∫ L

−L
φ(x, y) cos

(nπ
L
x
)

dx dy

an,0 =
1

2L2

∫ L

−L

∫ L

−L
φ(x, y) cos

(nπ
L
x
)

dx dy .
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Implementing the step function in the initial condition in Equation (2.2.33), we have

an,0 =
1

2L2

[∫ −a
−L

∫ L

−L
cos
(nπ
L
x
)

dx dy +

∫ a

−a

∫ −a
−L

cos
(nπ
L
x
)

dx dy

+

∫ a

−a

∫ a

−a
0 dx dy +

∫ L

a

∫ L

−L
cos
(nπ
L
x
)

dx dy +

∫ a

−a

∫ L

a
cos
(nπ
L
x
)

dx dy

]
an,0 = − 2a

nπL
sin
(nπ
L
a
)
.

Similarly, to get a0,m, we multiply each term of Equation (2.2.34) by cos
(
mπ
L y
)

and then integrate over
the square ([−L,L]× [−L,L]),∫ L

−L

∫ L

−L
a0,0 cos

(mπ
L
y
)

dx dy +
∑
n≥1

an,0

∫ L

−L

∫ L

−L
cos
(mπ
L
y
)

cos
(nπ
L
x
)

dx dy

+
∑
m≥1

a0,m

∫ L

−L

∫ L

−L
cos2

(mπ
L
y
)

dx dy +
∑
n≥1

∑
m≥1

an,m

∫ L

−L

∫ L

−L
cos
(nπ
L
x
)

cos2
(mπ
L
y
)

dx dy

=

∫ L

−L

∫ L

−L
φ(x, y) cos

(mπ
L
y
)

dx dy . (2.2.38)

Using the results in Equation (2.2.36), Equation (2.2.38) reduces to

a0,m

∫ L

−L

∫ L

−L
cos2

(mπ
L
y
)

dx dy =

∫ L

−L

∫ L

−L
φ(x, y) cos

(mπ
L
y
)

dx dy

a0,m =
1

2L2

∫ L

−L

∫ L

−L
φ(x, y) cos

(mπ
L
y
)

dx dy .

Implementing the step function in the initial condition in Equation (2.2.33), we have

a0,m =
1

2L2

[∫ −a
−L

∫ L

−L
cos
(mπ
L
y
)

dx dy +

∫ a

−a

∫ −a
−L

cos
(mπ
L
y
)

dx dy

+

∫ a

−a

∫ a

−a
0 dx dy +

∫ L

a

∫ L

−L
cos
(mπ
L
y
)

dx dy +

∫ a

−a

∫ L

a
cos
(mπ
L
y
)

dx dy

]
a0,m = − 2a

mπL
sin
(mπ
L
a
)
.

Also, to get an,m, we multiply each term of Equation (2.2.34) by cos
(
nπ
L x
)

and cos
(
mπ
L y
)
, and then

integrate over the square ([−L,L]× [−L,L]),∫ L

−L

∫ L

−L
a0,0 cos

(nπ
L
x
)

cos
(mπ
L
y
)

dx dy +
∑
n≥1

an,0

∫ L

−L

∫ L

−L
cos
(mπ
L
y
)

cos2
(nπ
L
x
)

dx dy

+
∑
m≥1

a0,m

∫ L

−L

∫ L

−L
cos
(nπ
L
x
)

cos2
(mπ
L
y
)

dx dy

+
∑
n≥1

∑
m≥1

an,m

∫ L

−L

∫ L

−L
cos2

(nπ
L
x
)

cos2
(mπ
L
y
)

dx dy

=

∫ L

−L

∫ L

−L
φ(x, y) cos

(nπ
L
x
)

cos
(mπ
L
y
)

dx dy . (2.2.39)
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Using the results in Equation (2.2.36),

an,m =
1

L2

∫ L

−L

∫ L

−L
φ(x, y) cos

(nπ
L
x
)

cos
(mπ
L
y
)

dx dy .

Implementing the step function in the initial condition in Equation (2.2.33),

an,m = − 4

nmπ2
sin
(nπ
L
a
)

sin
(mπ
L
a
)
.

Substituting the values of a0,0, an,0, a0,m, and an,m into Equation (2.2.32), we have

u(x, y, t) =

(
1− a2

L2

)
− 2a

L

∑
n≥1

1

nπ
sin
(nπ
L
a
)

cos
(nπ
L
x
)
e−D

π2

L2 n
2t

− 2a

L

∑
m≥1

1

mπ
sin
(mπ
L
a
)

cos
(mπ
L
y
)
e−D

π2

L2m
2t

− 4
∑
n≥1

∑
m≥1

1

nmπ2
sin
(nπ
L
a
)

sin
(mπ
L
a
)

cos
(nπ
L
x
)

cos
(mπ
L
y
)
e−D

π2

L2 (n2+m2)t .
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We integrate the function u(x, y, t) as defined in Equation (2.2.40) over the bleach region (([−a, a]×
[−a, a]))
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Since Lc = 2L and Lb = 2a, we have
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where Lc is the length of each side of the cell surface, Lb is the length of each side of the bleach region
and D is the diffusion coefficient of the proteins.

This is the model for the square bleach spot.



3. FRAP analysis with different models

In this chapter, we analyse FRAP experiments using the models we developed. We used these models to
simulate a typical FRAP recovery curve and then used the least square method to estimate the simulated
diffusion coefficient from the data generated. We also analysed the effect of noise and immobile fraction
on our ability to fit the diffusion coefficient accurately.

3.1 Description of the models

3.1.1 One dimensional models. We begin by describing the one-dimensional models which are rea-
sonable approximations of bleaching a rectangular strip. These models were developed by using the
one-dimensional diffusion equation given in Equation (2.1.1). In developing the one-dimensional mod-
els, this equation was solved using two different approaches which are the Fourier transforms and Fourier
series approach. The Fourier transforms method assumes the cell surface is infinite while the Fourier
Series method assumes it is finite.

For the Fourier transform method, we considered a bleach region of width wb and as initial condition,
we assumed that the initial fluorescence intensity is unity everywhere on the strip except in the bleached
region where it is zero as a result of the bleaching. In order to obtain our model, we integrated the
solution of the diffusion equation over the entire bleached region. The model for this method is given
as

H(t,D) =
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b
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[
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(
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2
√
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(3.1.1)

where erf is the usual error function, D is the diffusion coefficient of the proteins and wb is the width
of the bleached region.

(See chapter two for detailed derivation of the model.)

In deriving the Fourier series model, we assumed that the cell has a length Lc and a bleach region
of width wb. We used the same initial condition as that of the Fourier transforms approach and then
solved the diffusion equation in Equation (2.1.1) using the method of separation of variables and Fourier
series method. The solution obtained was integrated over the bleached region to obtain our model. The
Fourier series model is,
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(3.1.2)

where Lc is the length of the cell, wb is the width of the bleached region and D is the diffusion coefficient
of the proteins.

(See chapter two for detailed derivation of the model.)

3.1.2 Two dimensional models. For this case, we considered the square bleach spot and the disc
bleach spot. For a disc bleach spot, we used the diffusion equation in cylindrical coordinates to develop
the model but assumed that there is no diffusion in the z-coordinate (Equation (2.2.1)). We assumed
that the radius of the disc is a and that the cell surface is infinite. We also assumed the fluorescence
intensity on the boundary of the disc is unity at all time and that the initial intensity in the interior
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part of the disc is zero, simulating the bleached region. We solved the diffusion equation in Equation
(2.2.1) with these initial and boundary conditions and assumed that there is symmetry in the diffusion of
fluorescence on the disc. The solution of the diffusion equation was integrated over the entire bleached
region in order to obtain our model. The model is given as

H(t,D) = a2π −
∞∑
i=0

4π

α2
i

e−α
2
iDt (3.1.3)

where a is the radius of the disc and αi is the ith zero of the Bessel function of the first kind of order
zero.

(See chapter two for detailed derivation of the model.)

In modelling a FRAP experiment with a square bleach spot, we used the two-dimensional diffusion
equation in xy coordinates given in Equation (2.2.20). We assumed the surface of the cell is a square
of sides Lc and that the bleached region is a smaller square of sides Lb on the surface of the cell (See
Figure 2.3).

In addition to this, we assumed that the fluorescence intensity everywhere on the cell surface is unity
except in the bleached region (smaller square) where the intensity is zero. We solved the diffusion
equation in Equation (2.2.20) using separation of variables and Fourier series method and then integrate
the solution over the entire bleach region. Our model in this case is given as
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(3.1.4)

where Lc is the length of each side of the cell, Lb is the length of each side of the bleach region and D
is the diffusion coefficient of the proteins.

(See chapter two for detailed derivation of the model.)

3.2 FRAP simulations

In this sections, we used the models developed to simulate FRAP recovery curves and then used the least
square method to fit the diffusion coefficient from the generated data. All simulation were carried out
using Sage. We evaluated our models at different time points with a known value of diffusion coefficient
over a specified time interval. The value of these models at each time point gives the fluorescence
intensity in the bleached region at the specified time. The data generated were used to simulate FRAP
curves. Figures 3.1 shows the data generated using the one-dimensional Fourier transforms and Fourier
series models. We considered a bleached region of 2µm for these models and for the Fourier series
model, we assumed a cell of length 10µm.
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Figure 3.1: Simulated FRAP recovery curves us-
ing the 1D models.

Figure 3.2: Fitting the diffusion coefficient using
simulated data in Figure 3.1

In generating these FRAP curves, we considered 70 time points at 1 Hz, a diffusion coefficient of
D = 0.05 µm/s and mobile fraction Mf = 1 (which means that we have 100% recovery). The 1D
models predict the same fluorescence intensity in the bleached regions except at the few time points.
After simulating the curves, we used the least square method to estimate the diffusion coefficient from
the data. We were able to estimate D accurately from the generated data ( See Figures 3.2).

For the disc bleach spot, we used the model in Equation (3.1.3) and considered a disc of radius 1, 70
time points, D = 0.05µm2/s and Mf = 1 (Figure 3.3). We were also able to recover the diffusion
coefficient from the generated data accurately (Figure 3.4). The simulated FRAP curve for the square
bleach spot is displayed in Figure 3.5. This curve was generated using the model in Equation (3.1.4),
and considering a cell surface area of 100µm2. It is recommended that the bleached region should be
located at the center of the cell and that it should be less than 5% of the total surface area of the cell
in order to estimate the diffusion coefficient as accurate as possible (Dushek and Coombs, 2008). In
accordance with this, we chose a bleach region of 4µm2 located at the center of the cell (See Figure
2.3 for example). In this case, we also considered 70 data points, D = 0.05µm2/s and Mf = 1. Then
we used the least square method to fit the diffusion coefficient from the simulated data ( Figure 3.6).

Figure 3.3: Simulated FRAP recovery curve
generated using the model in Equation (3.1.3).

Figure 3.4: Fitting the diffusion coefficient using
simulated data in Figure 3.3.
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Figure 3.5: Simulated FRAP recovery curve
generated using the model in Equation (3.1.4).

Figure 3.6: Fitting the diffusion coefficient using
simulated data in Figure 3.5.

Next, we investigate the effect of noise on our ability to estimate the diffusion coefficient. To do this,
we generated FRAP data with 15% gaussian noise and tried to fit the diffusion coefficient from the
noisy data. Figure 3.7 shows an example of a noisy data from FRAP experiment. For this case, the 1D
models estimated the diffusion coefficient as 0.05µm/s (Figure 3.8) while the 2D models estimated it
as 0.06µm2/s with an error of 20% (Figure 3.9 and Figure 3.10) .

Figure 3.7: Simulated data with 15% gaussian
noise.

Figure 3.8: Fitting the diffusion coefficient from
data with 15% noise using the 1D models.
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Figure 3.9: Fitting the diffusion coefficient from
data simulated with 15% noise using the model
in Equation (3.1.4).

Figure 3.10: Fitting the diffusion coefficient
from data simulated with 15% noise using the
model in Equation (3.1.3).

Figure 3.11 and 3.12 show a 95% confidence interval test on estimating the diffusion coefficient of
proteins from simulated data with different variances of noise for the 1D and 2D model respectively. In
these figures, x is the mean fit of the diffusion coefficient and σ is the standard deviation of the fits.
For each level of noise, we simulated data and fit the diffusion coefficient with the generated data. We
repeat this process 100 times for each level of noise and then calculate the mean fit (x) and standard
deviation (σ).

Figure 3.11: Estimate of D for 1D models (95%
confidence interval).

Figure 3.12: Estimate of D for 2D models (95%
confidence interval).

We observed from Figure 3.11 that for the 1D models, at 95% confidence level, we can estimate the
diffusion coefficient accurately for a noise level less than 5%, and with an error of at most 40% for data
with 25% noise. While for the 2D models (Figure 3.12), we can estimate the diffusion coefficient with
an error of at most 20% from data with 10% noise and with an error of at most 50% from data with
25% noise.
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Since it is often difficult to have 100% fluorescence recovery during FRAP experiment, in addition to
the effect of noise, we also investigated the effect of immobile fraction on our ability to fit the diffusion
coefficient. We used data simulated with 15% gaussian noise and assumed that 5% of the proteins are
immobile. In recovering the diffusion coefficient, the 1D models estimated D as 0.06µm/s, the square
bleach model estimated it as 0.06µm2/s while the other 2D model estimated it as 0.07µm2/s with
60% accuracy. These results are displayed in Figures 3.13 and 3.14 for the 1D models, Figure 3.16 for
the square bleach model and Figure 3.15 for the disc bleach model.

Figure 3.13: Fitting the diffusion coefficient
from data simulated with 15% noise and 5%
immobile fraction using the model in Equation
(3.1.1).

Figure 3.14: Fitting the diffusion coefficient
from data simulated with 15% noise and 5%
immobile fraction using the model in Equation
(3.1.2).

Figure 3.15: Fitting the diffusion coefficient
from data simulated with 15% noise and 5%
immobile fraction using the model in Equation
(3.1.3).

Figure 3.16: Fitting the diffusion coefficient
from data simulated with 15% noise and 5%
immobile fraction using the model in Equation
(3.1.4).



4. Optimizing FRAP experiment

In this chapter, we optimize our ability to estimate the diffusion coefficient as accurate as possible either
by acquiring data at specified locations in the bleached region during recovery or by acquiring the image
of the entire bleached region at specified time points. This will help reduce the effect of the trade-off
between the speed of data acquisition and the size of the bleached region, and also reduce the effect
of background bleaching that occurs during data acquisition. All the investigations in the chapter are
based on simulations and all simulations were carried out using Sage.

4.1 Optimizing spatial location for data acquisition

In this section, we optimize our ability to acquire data at a faster rate during FRAP experiment. Since the
use the CLSM for FRAP experiment requires sequential scanning of the cell surface for data acquisition,
we intend to acquire data only at specified locations of the bleached region in order the reduce the time
taken to scan the entire bleached region and also to reduce the number of images acquired. This will
help reduce the error in the data acquired as a result of the trade-off and background bleaching.

We considered the case of bleaching a rectangular strip, and simulated FRAP data using the 1D model in
Equation (3.1.1). We partitioned the bleached region into equal sub-intervals and sampled fluorescence
intensity in the region at period intervals instead of considering the entire region. These sampled
intensities were used to estimate the average fluorescence intensity in the bleached region and also to
fit the diffusion coefficient. We intend to find the optimal region for data sampling and also the optimal
number of sub-intervals to be considered in order to estimate the diffusion coefficient as accurate as
possible.

Figure 4.1: Partitioning the bleached region

Figure 4.1 shows the partitioning of a bleached region into equal sub-intervals. In this figure, every
second sub-interval is selected and the selected sub-intervals are shaded in blue.

Since diffusion in this case is one-dimensional, we expect to have symmetry of fluorescence intensity
about the middle of the bleached region with the highest intensity at the edges of the region. Therefore,
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including the sub-intervals containing the two edges of the bleached region among the sampled sub-
intervals will lead to over estimating the fluorescence intensity in the region. We carried out several
experiments on this, considering different sizes of bleached region and different sub-intervals in the
regions. Our experiment also shows that including the sub-intervals that contains the two edges of the
bleached region among the sampled sub-intervals (Figure 4.1b) leads to over estimating the average
fluorescence intensity in the region (except all the sub-intervals are considered), thereby giving a less
accurate estimate of the diffusion coefficient. Including only one of the edges (See Figure 4.1a) gives a
better estimate than including both.

In order to get the best estimate of the diffusion coefficient, the sampled intervals must exclude both
edges of the bleached region. To achieve this, we partitioned the bleached region into sub-intervals and
then select the sub-intervals in a periodic manner, such that non of the sub-intervals containing the
edges are included in the selection (Figure 4.1c).

First, we considered selecting every second sub-interval, and then used the integrated fluorescence
intensity in the intervals to predict the average fluorescence intensity in the bleached region. This
average intensity is used to estimate the diffusion coefficient.

Next, we selected every third sub-intervals and then every fourth. Following the same procedure, the
results obtained are similar. But the best estimate was obtained when every second sub-interval is
selected as shown in Figure 4.1.

Figure 4.2: Fitting the diffusion coefficient by considering fluorescence intensity in different sub-intervals
of the bleached region.

We initially carried out the investigation with data simulated without noise. Since a typical FRAP data
contains noise, we simulated data with different variances of guassian noise and performed the same
investigation. The results obtained in all cases are similar. Figure 4.2 shows the results of a particular
case where different sub-intervals of the bleached region were considered. In this case, we considered
a bleached region of width 4µm, D=0.05µm/s, Mf = 1 and simulated data with 15% gaussian noise.
In fitting the diffusion coefficient, we partitioned the bleached region into sub-intervals and considered
different selections of the sub-intervals. When the sub-intervals containing the two edges of the bleached
region were included in the sampling, the diffusion coefficient was estimated as 0.01µm with 80% error,
and including only one of the edges, we obtained 0.02µm, that is with 60% error. In the case where
neither of the two edges was considered, the diffusion coefficient was estimated as 0.04µm, with 20%
error. We observed that the best estimate was obtained when neither of the two edges was included.
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4.2 Optimizing the timing for data acquisition

In this section, we optimize the timing for data acquisition during FRAP experiment by acquiring fewer
images during fluorescence recovery thereby reducing the amount of background bleaching that occurs
during data acquisition.

For this investigation, we also considered bleaching a rectangular strip and assumed that we can acquire
an image of the entire bleached region at once. We used the 1D models and considered different sizes
of bleached region. The result are similar for both models and for all sizes of bleached region.

First, we simulated data without noise and considered fitting the diffusion coefficient from the data
using only one time point and assuming Mf = 1. We were able to estimate the diffusion coefficient
accurately irrespective of the time point considered. In addition to this, we considered using more than
one time point and we were still able to estimate D accurately. In this case, the number of data points
considered and the timing of the data does not affect the accuracy of the estimate. Next, we assumed
there is an immobile fraction. In this situation, we were unable to estimate the diffusion coefficient
accurately.

Furthermore, we simulated data with 15% gaussian noise and tried to fit the diffusion coefficient with
few time points. We observed that considering only one time point, the point close to the beginning of
fluorescence recovery give better estimate than others. And considering more than one time point, the
points should be considerably spaced with more point at the beginning of the recovery. Also, at least
two time points are required for estimates with high degree of accuracy (Figure 4.4). We varied the
level of noise, and the results are similar for all noise variances.

Figure 4.3: Fitting the diffusion coefficient using
few time points (without noise).

Figure 4.4: Fitting the diffusion coefficient using
different numbers of time points.

Figure 4.3 shows a case where only two time points were considered for estimating D with Mf = 1 and
the same time points were also used with Mf = 0.9. Figure 4.4 shows a case where different numbers
of time points where considered. The data used in this case was simulated with 20% gaussian noise and
Mf = 1. When we used only one time point, D was estimated as 0.19µm/s, when we considered two
time points, it was estimated as 0.03µm/s and with three time points, it was estimated as 0.04µm/s.



5. Discussion and Conclusion

5.1 Discussion/Conclusion

We have developed several models for FRAP experiments with respect to different geometries of bleached
region. We have 1D models for bleaching a rectangular strip, a model for a square bleach spot and
another for a disc bleach spot. We used these models to simulate FRAP recovery curve and then used
the least square method to fit the diffusion coefficient from the simulated data.

We have also analysed the effect of noise and immobile fraction on our ability to fit the diffusion
coefficient accurately. We observed that with a noise level of 15%, we were able to estimate the
diffusion coefficient accurately for the 1D models and with at least 80% accuracy for the 2D models.
Also, with a 15% noise level and an immobile fraction of 5%, we were able to recover D with 80%
accuracy for the 1D model and with at least 60% accuracy for the 2D models. This shows that noise
and immobile fraction affects the accuracy of our fitting.

In addition, we investigated the robustness of the least square method as a technique for fitting diffusion
coefficient from FRAP data. We carried out a 95% confidence interval test on this method using different
variances of noise. For the 1D models, we estimated the diffusion coefficient accurately from simulated
data with less than 5% noise and with an error of at most 40% from data with 25% noise. And for
the 2D models, at 95% confidence level, we estimated the diffusion coefficient with an error of at most
20% from simulated data with 10% noise and at most 50% error for data with 25% noise.

Also, we provided a systematic way of sampling fluorescence intensity in the bleached region for 1D
bleaching in order to reduce the effect of the trade-off between the speed of data acquisition and the
size of the bleached region on the accuracy of the data acquired. This systematic sampling involves
sampling fluorescence intensity in some selected sub-regions of the bleached region and then estimating
the average intensity in the bleached region based on the sampled intensity. This technique will help
reduce the time taken by the scanner to scan the entire bleached region. Using this approach, we
observed that sampling fluorescence intensity at the two edges of the bleached region leads to over
estimating the average intensity in the region and therefore, gives a less accurate estimate of D. And
to get the best estimate of the diffusion coefficient, we must exclude sampling the fluorescence intensity
at the two edges of the bleached region.

Furthermore, we provided a technique of reducing the noise in the data acquired during FRAP ex-
periments as a result of background bleaching that occurs during image acquisition. This technique
involves taking fewer images. We discovered that we can also estimate the diffusion coefficient with a
high degree of accuracy by taking fewer images during fluorescence recovery. These images should not
be acquired at consecutive time intervals, there should be a considerable time spacing between them
with more images at the beginning of the recovery. Choosing the time of image acquisition carefully
could be of benefit to the experimentalist.

5.2 Future work

Future work in this area may include further optimization of the locations and timing of data acquisition
for 2D bleaching. In addition, the finite speed of the camera used in acquiring images may be explicitly
included in the analysis.
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