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Some analytical and numerical results are presented
for pattern formation properties associated with novel
types of reaction–diffusion (RD) systems that involve
the coupling of bulk diffusion in the interior of a multi-
dimensional spatial domain to nonlinear processes
that occur either on the domain boundary or within
localized compartments that are confined within
the domain. The class of bulk-membrane system
considered herein is derived from an asymptotic
analysis in the limit of small thickness of a thin
domain that surrounds the bulk medium. When the
bulk domain is a two-dimensional disk, a weakly
nonlinear analysis is used to characterize Turing and
Hopf bifurcations that can arise from the linearization
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uniform, steady-state of the bulk-membrane system.
In a singularly perturbed limit, the existence and
linear stability of localized membrane-bound spike
patterns is analysed for a Gierer–Meinhardt activator-
inhibitor model that includes bulk coupling. Finally,
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is studied for a class of PDE-ODE bulk-cell model
in a bounded two-dimensional domain that contains
spatially localized, but dynamically active, circular
cells that are coupled through a linear bulk diffusion
field. Applications of such coupled bulk-membrane
or bulk-cell systems to some biological systems are
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1. Introduction
Membrane-bound pattern formation problems, as initiated in [1], involve the coupling of a
bulk diffusion field in a bounded domain to a nonlinear reaction–diffusion (RD) system that is
restricted to the domain boundary. Many such bulk-membrane coupled RD systems are inspired
by applications in cell biology owing to the natural compartmentalization of membrane-bound
(surface) and cytosolic bulk species, as is typical in intracellular processes. Such models have
been employed in the context of cell polarization (cf. [2–5]), which is the symmetry-breaking
process leading to the spatial distribution of intracellular proteins into one or multiple clusters
of molecules, and for which the persistence of such an asymmetric organization is known to
be essential in the migration and development of cells (cf. [6]). Other applications include the
dispersal and reformation of protein clusters resulting from pole-to-pole oscillatory dynamics
of Min proteins in E. Coli (cf. [7,8]), which are needed for cell growth and division, as well as
oscillatory dynamics of Cdc42 proteins in fission yeast (cf. [9]). While early mathematical models
of the Min system incorporated the compartmentalization of Min proteins to the cell cytosol and
membrane [7,10], more recent studies have been based on bulk-membrane coupled systems that
directly model the interchange between bulk- and membrane-bound states of the Min proteins
[11,12]. More recently, bulk-membrane RD systems have been used to model the clustering of
proteins on the plasma membrane (cf. [13]) that arise from the coupling of the membrane to the
cytoplasm. Such protein aggregates are believed to play a key role in certain neurodegenerative
diseases.

Previous studies of bulk-membrane coupled models have primarily focused on a combination
of Turing-type linearized stability analysis and in silico experiments [1,2,14]. For both analysis and
computation, bulk-membrane coupled systems introduce some unique challenges. In contrast
to typical RD systems, bulk-membrane coupled models do not, in general, admit spatially
homogeneous steady-state solutions. Moreover, the coupling between bulk- and membrane-
bound problems, as well as the curved geometry of the cell membrane, lead to difficulties in
numerical simulations. Both of these challenges have been addressed with the development of
Turing-type stability analysis in which the linearization occurs about a solution that is spatially
homogeneous on the membrane but inhomogeneous in the bulk [2], as well as the development
of finite element [4,14–16], phase field [1], and spectral [3] numerical methods specifically
adapted for bulk-membrane models. However, the behaviour of solutions to bulk-membrane
coupled models beyond the onset of Turing-type instabilities has not yet been well-explored
with exceptions being the study of wave-pinning phenomena using perturbation theory [4],
and in silico exploration of the effects of domain geometry and spatial inhomogeneities for a
particular model [17]. Finally, a rigorous PDE framework has recently been employed to prove
well-posedness and the existence of stationary states to bulk-membrane RD models [16,18–20].

In §§2–4, we outline some recent results for ‘far-from-equilibrium’ pattern-formation
phenomena in bulk-membrane coupled models. In §2, we first provide a systematic derivation
of a bulk-membrane coupled model that results from the asymptotic limit of a system of coupled
RD systems where one system is posed in the domain interior while the other is formulated in
a thin domain that protrudes from the boundary. In §3,we highlight some results in [21] on the
weakly nonlinear analysis of spatio-temporal patterns in bulk-membrane models with circular
bulk geometry. In §4, we outline results from [22] for multi-spike solutions for a one-dimensional
singularly perturbed bulk-membrane coupled Gierer–Meinhardt (GM) RD model.

A different class of RD system that involves the coupling of bulk diffusion in a multi-
dimensional spatial domain to localized nonlinear processes are the bulk-cell PDE-ODE models,
originating from [23] (see also [24,25]), and studied in a two-dimensional setting in [26–28]. In
these systems, a PDE bulk diffusion field, referred to as the autoinducer, mediates communication
between a collection of small signalling compartments or ‘cells’ within the domain. Intracellular
nonlinear reactions, as modelled by an ODE system, can be prescribed within each cell (see
figure 9 below). The secretion and feedback of a signalling molecule from and into the spatially
localized cells allows each cell to modulate its intracellular dynamics based on the global bulk



3

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200276

...............................................................

diffusion field that is produced by the entire collection of cells. This new theoretical framework
is particularly relevant for modelling ‘cell-to-cell’ bulk-mediated communication in certain
microbial systems, as specific autoinducers have been experimentally identified in several such
biological systems, including cAMP that triggers intracellular oscillations for a collection of social
amoebae Dictyostelium discoideum and acts as a precursor to guide the cells to aggregation in low
nutrient environments (cf. [29–31]), and acetaldehyde (Ace) that triggers glycolytic oscillations in
colonies of yeast cells (cf. [32–34]), among others.

In §5, the bulk-cell PDE-ODE model of [26,28] is introduced, and Sel’kov intracellular kinetics
are used as a conceptual model to illustrate the sudden emergence of sustained intracellular
oscillations of a collection of cells via a Hopf bifurcation, as mediated by the autoinducer field.
In our model, it is assumed the cells are in a quiescent state when they are uncoupled from the
bulk medium. This switch-like onset of intracellular oscillations is to be contrasted with the more
typical Kuramoto paradigm in which incoherently oscillating dynamically active units become
increasingly synchronized as the coupling strength between the units increases (cf. [35]). For
our bulk-cell PDE-ODE model, some new results for the emergence of intracellular oscillations
resulting from either a single defective cell, or from a relatively large collection of non-identical
cells, are given. In §6, we briefly discuss a few open problems and modelling opportunities
afforded by the theoretical frameworks surveyed in §§2–5.

2. Derivation of a bulk-membrane coupled system
The key feature of a bulk-membrane coupled RD system is that it involves the coupling of a
PDE/ODE system in an N-dimensional (N = 2, 3) bulk region, with a corresponding PDE/ODE
system posed on its (N − 1)-dimensional boundary. In the context of cell biology, such a bulk-
membrane coupled model serves only as a leading order approximation under the assumption
that the cell membrane is much thinner than the characteristic length scale of the cell bulk region.
Here, we briefly provide a systematic derivation of such a leading order approximation.

We begin by assuming that the cell bulk region is given by a bounded domain Ω ⊂ R
N (N =

2, 3) with smooth boundary ∂Ω , while the cell membrane is specified by the thin domain

Ωδ ≡ {x + δη ν(x)|x ∈ ∂Ω , 0<η < 1}, (2.1)

where ν(x) is the outward unit normal at x ∈ ∂Ω and 0< δ� 1 is the membrane thickness. The
boundary of the membrane is made up of two disjoint components corresponding to η= 0 and
η= 1 in (2.1), and which we denote by ∂Ω i

δ = ∂Ω and ∂Ωe
δ , respectively.

Next, we suppose that there are n ≥ 1 and m ≥ 1 chemical species in the bulk and in the
membrane with concentrations U = (U1, . . . , Un)T and u = (μ1, . . . ,μm)T, respectively. In both the
bulk and the membrane, we assume that these chemical species undergo isotropic diffusion and
reaction kinetics so that their concentrations satisfy

∂tU = D�U + F(U), x ∈Ω ; D∂nU = qδ(u, U), x ∈ ∂Ω (2.2a)

and

∂tu = d�u + fδ(u), x ∈Ωδ ; d∂nu = −qδ(u, U), x ∈ ∂Ω i
δ ; d∂nu = 0, x ∈ ∂Ωe

δ , (2.2b)

where ∂n in (2.2a) and (2.2b) denotes the outward normal derivative to the boundaries of the
bulk domain Ω and the thin strip Ωδ , respectively. In (2.2), D and d are n × n and m × m
diagonal matrices of bulk- and membrane-bound diffusion coefficients, respectively, F(·) and fδ(·)
denote the bulk- and membrane-bound kinetics, respectively, and qδ(·, ·) denotes an interchange
process across the bulk-membrane interface ∂Ω . While we may anticipate that the bulk-bound
reaction kinetics F(·) are independent of the membrane-thickness, the same cannot be said of the
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membrane-bound kinetics fδ(·) and the boundary interchange qδ(·, ·). Indeed, by integrating (2.2b)
over Ωδ we calculate from the divergence theorem that

d
dt

∫
Ωδ

u dx = −
∫
∂Ω

qδ(u, U) ds +
∫
Ωδ

fδ(u) dx. (2.3)

Since vol(Ωδ) =O(δ) and area(∂Ω) =O(1), the three terms are balanced for δ� 1 provided that
they satisfy O(δ)O(u) =O(qδ) =O(δ)O(fδ). Enforcing that U =O(1), and that there is an O(1)
exchange in (2.2a) between the bulk medium and the thin domain, (2.3) and (2.2b) imply that

qδ =O(1), u =O(δ−1), fδ =O(δ−1). (2.4)

To derive a leading order approximation to the bulk-membrane coupled RD system (2.2) we
let X(s) ∈ ∂Ω parametrize ∂Ω , where s = (s1, s2) ∈ S ⊂ R

2 if N = 3 and s ∈ S ⊂ R denotes the arc
length along ∂Ω if N = 2. Next, we choose the sign of the curvature κ(s) of X(s) when N = 2 and
the orientation of the local basis (X1, X2) when N = 3 such that the unit normal

ν(s) = κ(s)−1 d2X
ds2 (N = 2) and ν(s1, s2) = ∂1X × ∂2X

|∂1X × ∂2X| (N = 3), (2.5)

is outward pointing at x ∈Ω . Each point in x ∈Ωδ is obtained in terms of the boundary fitted
coordinates (s, η) ∈ S × (0, 1) by x = X(s) + δην(s). The asymptotic analysis below hinges on the
following expansion of the Laplacian:

�=
{
δ−2∂2

η + δ−1κ∂η − κ2η∂η +�∂Ω + O(δ), N = 2,

δ−2∂2
η + 2δ−1H∂η − (κ2

1 + κ2
2 )η∂η +�∂Ω + O(δ), N = 3,

(δ� 1). (2.6)

Here κi (i = 1, 2) are the principal curvatures of ∂Ω , H = (κ1 + κ2)/2 is the mean curvature of ∂Ω
when N = 3, and �∂Ω is the Laplace–Beltrami operator on ∂Ω . The expression (2.6) is obtained
by expanding the Laplacian in terms of the curvilinear boundary-fitted coordinates (s, η). For the
remainder of this section, we will denote �∂Ω = ∂2

s when N = 2.
Based on the scaling (2.4) we suppose that fδ(u) = δ−1f (δu) and qδ(u, U) = q(δu, U), and let

u = δ−1u0 + u1 + δu2 + O(δ2), U = U0 + O(δ), U0 =O(1), ui =O(1), i = 0, 1, 2 . . . . (2.7)

We substitute this expansion into (2.2) and collect powers of δ. From the leading-order O(δ−3)
terms, we get

d∂ηηu0 = 0, (s, η) ∈ S × (0, 1), d∂ηu0 = 0, η= 0, 1,

which implies that u0 = u0(s). Similarly, from the O(δ−2) problem, we obtain that the first-order
correction is also independent of η. At next order, the O(δ−1) problem is given by

∂tu0 = d∂ηηu2 + d�∂Ωu0 + f (u0), (s, η) ∈ S × (0, 1)

and
d∂ηu2 = q(u0, U0), η= 0, d∂ηu2 = 0, η= 1.

Upon integrating the PDE for u0 over 0<η< 1, and using the two boundary conditions for u2
and the η-independence of u0, we obtain that (2.2) is, to leading order in δ� 1, approximated by

∂tU0 = D�U0 + F(U0), x ∈Ω , D∂nU0 = q(u0, U0), x ∈ ∂Ω (2.8a)

and
∂tu0 = d�∂Ωu0 + f (u0) − q(u0, U0), x ∈ ∂Ω . (2.8b)

3. Weakly nonlinear patterns in bulk-membrane systems
Here we highlight the multiple-scale expansion approach of [21] for the derivation of amplitude,
or normal form, equations for a variety of spatio-temporal patterns in a class of coupled bulk-
membrane RD models with circular bulk geometry. Moreover, we discuss some results obtained
from these normal forms, and we illustrate some new ‘far-from-equilibrium’ patterns that are
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observed. In the formulation, we assume that two bulk species U, V undergo passive diffusion
but with a linear decay of their bulk kinetics in a two-dimensional disk domain of radius R. In
terms of polar coordinates r and θ , the bulk species are assumed to satisfy

Ut = Du(Urr + r−1Ur + r−2Uθθ ) − σuU and Vt = Dv(Vrr + r−1Vr + r−2Vθθ ) − σvV, (3.1)

in 0< r<R and 0 ≤ θ < 2π . Here Du, Dv and σu, σv are positive constants indicating the diffusion
and degradation coefficients for each species. Next, we use Robin-type boundary conditions
to model the exchange near the boundary between the bulk species and the membrane-bound
species, denoted as u, v, as

DuUr = α(u, U), DvVr = β(v, V), r = R, (3.2)

with arbitrary flux terms α(u, U) and β(v, V). Finally, the dynamics of the membrane-bound
species is assumed to be governed by the following nonlinear RD system:

ut = d
R2 uθθ − α(u, U) + f (u, v), vt = d

R2 vθθ − β(v, V) + g(u, v), r = R, (3.3)

where d> 0 is the surface diffusion coefficient, assumed to be a common constant to both u and
v, while f (u, v) and g(u, v) are arbitrary nonlinear kinetics. Our aim here by assuming identical
lateral diffusivities is to avoid the short-range activation and long-range inhibition paradigm,
as has been typical for the conventional study of diffusion-driven instabilities. As a result, the
spatio-temporal patterns illustrated below directly result from the bulk-membrane coupling.

In §3a, we outline how to derive amplitude equations characterizing the branching behaviour
and local stability of spatio-temporal patterns near Hopf and pitchfork bifurcation points. Three
numerical examples illustrating the weakly nonlinear theory are given. In §3b, we explore the
formation of large amplitude rotating waves that occur in the nonlinear regime away from O(2)
symmetric Hopf bifurcation points. The full numerical results shown below are obtained via
numerical continuation of a finite-element discretization of the coupled bulk-membrane model
(3.1)–(3.3) as implemented by the MATLAB bifurcation package pde2path (cf. [36,37]).

(a) Weakly nonlinear analysis: amplitude equations
Multi-scale expansion methods have been widely used to derive amplitude equations
characterizing the onset of spatio-temporal patterns in various PDE systems (cf. [38,39]). We now
show how it can be extended to the bulk-membrane model defined by (3.1)–(3.3). To illustrate the
weakly nonlinear theory, we assume that α(u, U) and β(v, V) in (3.2) are linear of the form

α(u, U) = Ku(u − U), β(v, V) = Kv(v − V), (3.4)

where Ku, Kv are two constant coupling parameters. In addition, we will use prototypical
Brusselator kinetics for the two nonlinearities f (u, v) and g(u, v) in (3.3), given by

f (u, v) = a − (b + 1)u + u2v, g(u, v) = bu − u2v. (3.5)

Here we assume that b< a2 + 1, so that for the uncoupled case (Ku = Kv = 0) there exists a unique
spatially uniform steady state to (3.3) that is linearly stable. First, it is convenient to rewrite the
coupled bulk-membrane model as a nonlinear evolution equation in the form

Ẇ = F(W;μ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Du�U − σuU

Dv�V − σvV
d

R2 uθθ − Ku(u − U|r=R) + f (u, v)

d
R2 vθθ − Kv(v − V|r=R) + g(u, v)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (3.6)
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where μ ∈ R
p is some vector of bifurcation parameters, and where W ≡ (U, V, u, v)T satisfies

Du
∂U
∂r

= Ku(u − U), Dv
∂V
∂r

= Kv(v − V), r = R. (3.7)

We readily calculate that a radially symmetric steady-state solution to (3.6) is given by

We(r) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

KuueI0(ωur)
DuωuI1(ωuR) + KuI0(ωuR)

KvveI0(ωvr)
DvωvI1(ωvR) + KvI0(ωvR)

ue

ve

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, ωu ≡
√
σu

Du
, ωv ≡

√
σv

Dv
, (3.8)

where In(z) is the usual modified Bessel function. Here the membrane-bound, spatially uniform,
steady-state vector (ue, ve)T is a solution of the nonlinear algebraic problem

Ku

1 + (Ku/
√

Duσu)(I0(ωuR)/I1(ωuR))
ue − f (ue, ve) = 0,

and
Kv

1 + (Kv/
√

Dvσv)(I0(ωvR)/I1(ωvR))
ve − g(ue, ve) = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.9)

To analyse the linear stability of this base state, we introduce the perturbation

W(r, θ , t) = We(r) + Wn(r) einθ+λt, (3.10)

where λ ∈ C is the growth rate of the perturbation and n ∈ Z is its spatial wave number. By solving
the linearized problem, we readily obtain in terms of modified Bessel functions that

Wn(r) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

KuunIn(Ωur)
DuΩuI′n(ΩuR) + KuIn(ΩuR)

KvvnIn(Ωvr)
DvΩvI′n(ΩvR) + KvIn(ΩvR)

un

vn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Ωu ≡
√
λ+ σu

Du
, Ωv ≡

√
λ+ σv

Dv
. (3.11)

Here the eigenvector (un, vn)T is a non-trivial solution of the 2 × 2 homogeneous matrix problem

⎛
⎜⎜⎜⎜⎜⎝
λ+ n2d

R2 + Ku

1 + Ku
DuΩu

In(ΩuR)
I′n(ΩuR)

− ∂f
∂u

− ∂f
∂v

− ∂g
∂u

λ+ n2d
R2 + Kv

1 + Kv
DvΩv

In(ΩvR)
I′n(ΩvR)

− ∂g
∂v

⎞
⎟⎟⎟⎟⎟⎠
(

un

vn

)
=
(

0
0

)
, (3.12)

which occurs for those values of λ (eigenvalues) for which the determinant of the matrix in (3.12)
vanishes. In (3.12), all partial derivatives are evaluated at the radially symmetric steady state.

To illustrate the weakly nonlinear theory, we will only consider pitchfork bifurcations for n 
= 0
and Hopf bifurcations that are associated with the trivial wave number n = 0 as the coupling rate
Kv and the bulk diffusivity Dv are simultaneously varied. The intricate case of co-dimension-two
pitchfork-Hopf bifurcations, near which oscillating spatial patterns occur, is also treated in [21].
The effect of Hopf instabilities associated with modes n 
= 0 are discussed in §3b.

The key idea of a multi-scale analysis is to use the distance from some bifurcation point as
a small parameter σ � 1 to define a slow time-scale τ = σ 2t. Hence, we let μ= (Kv , Dv)T be a
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bifurcation parameter vector and we expand it near a bifurcation point μ0 as

μ≡ (Kv , Dv)T =μ0 + σ 2μ1, ||μ1|| ≡ 1, (3.13)

where μ1 ∈ R
2 is a detuning parameter indicating the direction of the bifurcation in parameter

space. By choosing the bifurcation parameter μ ∈ R
2, the bifurcation behaviour of solutions along

various slices through the (Kv , Dv) phase diagram is more readily analysed (cf. [21]).
Next, we denote W ≡ W(r, θ , t, τ ) and introduce the following regular asymptotic expansion:

W = We + σW1 + σ 2W2 + σ 3W3 + O(σ 4). (3.14)

Upon substituting (3.14) in (3.6) and (3.7), we obtain a series of linear systems to be solved at
each order O(σ j). At O(1), we have the steady-state problem F(We;μ0) = 0, which is automatically
satisfied. Next, there are two possible solutions to the O(σ ) problem, which corresponds to the
linearized system, depending on the specific bifurcation considered. If the system undergoes a
Hopf bifurcation at μ0 with critical eigenvalues λ= ±iλI, we write

W1 = A0(τ )W0 eiλI t + A0(τ )W0 e−iλI t, (3.15)

while for the pitchfork bifurcation we introduce the following ansatz:

W1 =Wn[An(τ ) einθ + An(τ ) e−inθ ], n 
= 0. (3.16)

The amplitude coefficients An(τ ) in (3.15) and (3.16) are at this stage unknown, but evolution
equations governing their dynamics on the slow time-scale are readily derived upon applying a
solvability condition on the inhomogeneous linear system defined by the O(σ 3) problem (see §2
of [21]). In this way, the amplitude or normal form ODE for the case of a Hopf bifurcation is

dA0

dτ
= gT

1000μ1A0 + g2100|A0|2A0, (3.17)

with complex coefficients g1000 ∈ C
2 and g2100 ∈ C, where μ1 ∈ R

2 measures the deviation of the
bifurcation point from criticality (see (3.13)). Similarly, for a pitchfork bifurcation we obtain

dAn

dτ
= gT

0010μ1An + g0021|An|2An, n 
= 0, (3.18)

where both coefficients g0010 ∈ R
2 and g0021 ∈ R are real. The normal form ODEs (3.17) and (3.18),

also known as Stuart–Landau equations, are special cases of the Ginzburg–Landau equations
with no diffusion terms, and have the same form as amplitude equations derived for a weakly
nonlinear analysis of patterns in RD systems on bounded domains. Explicit formulae for g1000,
g2100, g0010 and g0021, for the coupled bulk-membrane problem, are derived in [21].

The steady states of (3.17) and (3.18) have a clear interpretation in terms of spatio-temporal
patterns of the coupled bulk-membrane model. For instance, (3.18) admits a trivial steady-state
An = 0, corresponding to the radially symmetric steady-state. When it exists, the non-trivial
steady-state Ane of (3.18) satisfies

|Ane| =
√

−gT
0010μ1

g0021
, (3.19)

and is stable if and only if the cubic term coefficient g0021 is negative. In this case, the pitchfork
bifurcation is supercritical and a stable steady-state pattern is expected near the bifurcation point
μ0. Alternatively, if g0021 > 0, the pitchfork bifurcation is said to be subcritical and the pattern
is unstable. Finally, we readily obtain the following asymptotic approximation for a family of
steady-state patterns in the weakly nonlinear regime:

W = We + σ |Ane|Wn[ei(nθ+φ) + e−i(nθ+φ)] + O(σ 2), (3.20)

where φ ∈ R is an arbitrary phase shift added owing to the O(2) equivariance. A similar analysis
applies to (3.17), with the difference being that the coefficients are complex-valued (see §3 of [21]).

To illustrate our weakly nonlinear results, we first show in figure 1 how the transition between
supercritical and subcritical Hopf bifurcations can be captured simply by numerically evaluating
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Figure 2. (a) Subcritical pitchfork bifurcation as a function of Kv , with stable branches indicated by heavy curves. The red curve
is the asymptotic prediction (3.20). (b) The numerical and weakly nonlinear solutions agree well after subtracting with the
trivial branch and shifting the bifurcation point to the origin. (c) A numerically computed unstable pattern for the bulk density
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boundary of the unit disk. (Online version in colour.)

�(g2100) along a stability boundary in the Dv versus Kv parameter plane. Weakly nonlinear
analyses can sometimes detect very delicate phenomena, which would not easily be captured
just from a time-dependent numerical simulation. This is the case for the global bifurcation
diagram shown in the middle panel, where the family of periodic solutions is stable only in
a very small window near the supercritical Hopf bifurcation. However, away from the Hopf
bifurcation point both branches possess a fold point connecting unstable limit cycles to stable
radially symmetric relaxation-type oscillations. Finally, as σ = √||μ− μ0|| → 0, the asymptotic
approximations of spatio-temporal patterns become increasingly accurate. This is illustrated in
figures 2b and 3b, where one can observe a very good agreement between the full PDE numerics
and the weakly nonlinear prediction (3.20) near a subcritical and a supercritical pitchfork
bifurcation, respectively. Upon comparing the corresponding global bifurcation diagrams shown
in figures 2a and 3a, we observe that the weakly nonlinear theory for the subcritical case
does not agree as well with the full numerics away from the bifurcation point as it does for
the supercritical case. This is likely due to the existence of a nearby saddle-node (secondary)
bifurcation point on the global bifurcation diagram for the case of a subcritical pitchfork
bifurcation.
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(b) Far from equilibrium dynamics: formation of rotating waves
A Hopf bifurcation in the presence of O(2) symmetry (for instance resulting from periodic
boundary conditions) generically leads to the formation of standing and rotating waves (cf. [40]).
In §5 of [21], the formation of left and right rotating waves around a circular bulk domain was
briefly numerically explored for a special case of the model (3.1)–(3.3) with coupling functions

α(u, U) = rdu − raU and β(v, V) = pdv − paV, (3.21)

and Brusselator kinetics (3.5) on the boundary. In figure 4, we provide a new result for the global
bifurcation diagram, as obtained with pde2path, where branches of rotating waves are computed
as relative equilibria in a moving frame with speed s = 2πR/(nT), where n is the wave number and
T is the period (see [41] for details of the algorithm). In this figure, the stable n = 0 branch (green
curve) corresponds to a family of radially symmetric periodic solutions and is easily computed
as periodic orbits in a static frame. As the reaction rate b increases in (3.5), we remark that the
n = 1 rotating wave branch (black curve) gains stability in a Hopf bifurcation near b ≈ 7.04, where
an unstable branch of modulated waves emerge (cyan curve). This critical value is labelled by
the black HP1 point in figure 4. The n = 2 rotating wave branch (red curve), originating at HP3
in figure 4, is unstable for the parameter regime considered. A few snapshots of the stable n = 1
rotating wave are shown in figure 5. We also suspect the presence of unstable branches of standing
waves near the n = 1 and n = 2 rotating wave branches, but these branches were not computed.

4. Spike solutions in a bulk-membrane coupled GMmodel
The GM model [42] is a prototypical activator-inhibitor RD system that, in the limit of
an asymptotically small activator diffusivity, has been well-studied using both rigorous and
asymptotic techniques [43–46]. By assuming that the inhibitor shuttles between a membrane- and
bulk-bound state, while the activator is solely membrane-bound, the authors of [22] extended
the previous asymptotic theory by incorporating bulk-membrane coupling. In this section, we
highlight some results of [22] for a bulk-membrane coupled GM model, especially as they pertain
to the effects of bulk-membrane coupling on the existence and linear stability of symmetric multi-
spike solutions. Specifically, for a bounded two-dimensional domain Ω with a smooth boundary
∂Ω of perimeter L> 0, we consider the membrane-bound GM model

∂tu = ε2∂2
σu − u + u3

v
, 0<σ < L, t> 0 (4.1a)
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and

τs∂tv = Dv∂
2
σ v − (1 + K)v + KV + ε−1u3, 0<σ < L, t> 0, (4.1b)

where σ denotes the arc-length along the boundary, and u and v are the concentrations of the
membrane-bound activator and inhibitor, respectively. The activator diffusivity ε2 is assumed to
be asymptotically small, while the remaining parameters are taken as O(1) with respect to ε� 1.
The inhibitor field v for this membrane-bound problem is coupled to the bulk solution V, the
latter of which satisfies the linear diffusion equation

τb∂tV = Db�V − V, x ∈Ω , Db∂nV + KV = Kv, x ∈ ∂Ω . (4.1c)

Here τb and Db, as well as the coupling parameter K ≥ 0, are O(1) with respect to ε� 1. In §4a, we
outline the asymptotic analysis for the construction of multi-spike equilibria for this bulk-coupled
model (4.1). In §4b, we outline the linear stability analysis of symmetric multi-spike equilibria.

We remark that our particular choice of GM exponents in (4.1) yields an explicitly solvable non-
local eigenvalue problem (NLEP) that considerably simplifies the stability analysis (see equation
(4.10) below), but that retains qualitatively similar phenomena to that which occurs with the
protypical GM exponent set and for other more general GM exponent sets (see [22]). Particular
choices of the exponent sets for the nonlinearities in the generalized GM model for which the
spectrum of the associated NLEP can be reduced more tractably to the study of certain explicit
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transcendental equations in the eigenvalue parameter were first identified in [47]. These non-local
spectral problems were referred to in [47] as explicitly solvable NLEPs.

(a) Multi-spike equilibrium solutions
The key feature of (4.1) that allows for a detailed asymptotic construction and analysis of its
equilibrium solutions is the asymptotically small diffusivity of the activator. Indeed, for ε→ 0,
steady states for the activator field consist of several O(1) peaks, or ‘spikes’, that are concentrated
in a disjoint finite collection of O(ε) intervals. Such strongly localized solutions, characterized by
large amplitude perturbations confined to asymptotically small regions, are commonly found in
a wide class of singularly perturbed linear and nonlinear problems (see [48]).

By using the method of matched asymptotic expansions, the problem of constructing a multi-
spike equilibrium solution to (4.1) can be reduced to a finite-dimensional problem of determining
the location and height of each spike. Specifically, in the limit ε→ 0+, an N-spike pattern with
spikes concentrating at 0 ≤ σ1, . . . , σN < L is given asymptotically by (see proposition 2.1 of [22])

ue(σ ) ∼
N∑

j=1

v
1/2
ej w

(
ε−1[σ − σj]), ve(σ ) ∼

√
2π

N∑
j=1

v
3/2
ej G0

∂Ω (σ , σj) (4.2a)

and

Ve(x) ∼
√

2πK
N∑

j=1

v
3/2
ej

∫L

0
G0
Ω (x, σ̃ )G0

∂Ω (σ̃ , σj) dσ̃ , (4.2b)

where ve1, . . . , veN are the undetermined spike heights. In (4.2), G0
Ω (x, σ̃ ) is the bulk Robin Green’s

function satisfying (with λ= 0)

Db�xGλΩ (x, σ̃ ) − μ2
bλGλΩ (x, σ̃ ) = 0, x ∈Ω (4.3a)

and
Db∂nGλΩ (x(σ ), σ̃ ) + KGλΩ (x(σ ), σ̃ ) = δ(σ − σ̃ ), x(σ ) ∈ ∂Ω , (4.3b)

where μbλ ≡ √
1 + τbλ, while G0

∂Ω is the non-local membrane-bound Green’s function satisfying

Dv∂
2
σGλ∂Ω (σ , ζ ) − μ2

sλGλ∂Ω (σ , ζ ) + K2
∫L

0
GλΩ (x(σ ), σ̃ )Gλ∂Ω (σ̃ , ζ ) dσ̃ = −δ(σ − ζ ), (4.4)

where 0<σ , ζ < L and μsλ ≡ √
1 + K + τsλ. The function w(y) = √

2 sechy is the homoclinic
solution of w′′ − w + w3 = 0 with w′(0) = 0, w(0)> 0, and w → 0 as |y| → ∞. By matching inner
and outer asymptotic expansions, and upon deriving a higher-order solvability condition, it was
shown in § 2.1 of [22] that the spike heights and locations satisfy the nonlinear algebraic system

vei =
√

2π
N∑

j=1

v
3/2
ej G0

∂Ω (σi, σj), v
3/2
ei

〈
∂σG0

∂Ω (σ , σi)
〉
σi

+
N∑

j
=i

v
3/2
ej ∂σG0

∂Ω (σi, σj) = 0, (4.5)

for i = 1, . . . , N, where we have defined 〈f 〉σi ≡ 1
2 limh→0+ [f (σi + h) + f (σi − h)]. WhenΩ is the unit

disk or when Db → ∞ we can calculate G0
Ω and G0

∂Ω explicitly. In this way, from (4.5), the spike
locations and heights of a symmetric N-spike equilibrium solution are given by

σi = (i − 1)L/N, vei = ve0 ≡
[√

2π
∞∑

k=0

G0
∂Ω

( kL
N , 0

)]−2
, i = 1, . . . , N. (4.6)

Figure 6a shows a steady-state two-spike pattern on the boundary of the unit disk.

(b) Linear stability of symmetric N-spike equilibria
The linear stability properties of the symmetric N-spike equilibrium pattern, as given
asymptotically by (4.2) and (4.6), is obtained by introducing the perturbation u(σ ) = ue(σ ) +
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eλtφ(σ ), v(σ ) = ve(σ ) + eλtψ(σ ) and V(x) = Ve(x) + eλtη(x) into (4.1) and linearizing the resulting
system. This yields the singularly perturbed eigenvalue problem

ε2∂2
σ φ − φ + 3u2

ev
−1
e φ − u3

ev
−2
e ψ = λφ, 0<σ < L, (4.7a)

Dv∂
2
σψ − μ2

sλψ + Kη= −3ε−1u2
eφ, 0<σ < L (4.7b)

and Db�η − μ2
bλη= 0, x ∈Ω ; Db∂nη + Kη= Kψ , x ∈ ∂Ω . (4.7c)

It can be shown that this spectral problem admits both large and small eigenvalues for which
λ=O(1) and λ=O(ε2), respectively. The small eigenvalues are related to the stability of the
N-spike pattern with respect to slow drift dynamics and are expected to be stable due to the
symmetry properties of the symmetric N-spike steady state. On the other hand, the stability
properties with respect to the large eigenvalues can be determined by first using the method
of matched asymptotic expansions to reduce (4.7) to a system of NLEPs, which can be analysed.

To determine the stability with respect to the large eigenvalues of (4.7) we first let Gλ∂Ω denote
the symmetric N × N matrix with entries (Gλ∂Ω )ij = Gλ∂Ω (σi, σj) for i, j = 1, . . . , N. Since Gλ∂Ω is also
circulant, its eigenvalues μk(λ) and corresponding eigenvectors ck are given explicitly by

μk(λ) =
N−1∑
j=0

Gλ∂Ω (jL/N, 0) ei(2π jk/N), ck = (1, ei(2πk/N), . . . , ei(2π(N−1)k/N))T, (4.8)

for k = 0, . . . , N − 1. By using the method of matched asymptotic expansions, it was shown in [22]
that an eigenfunction of (4.7) has the form φ(σ ) ∼∑N

j=1 ckjΦk(ε−1[σ − σj]) where ckj is the jth entry
of ck. Here, for each mode k, λ is an eigenvalue of an NLEP for Φk(y) given by

Φ ′′
k −Φk + 3w2Φk − 3μk(λ)

μk(0)
w3

∫∞
−∞ w2Φk dy∫∞

−∞ w3 dy
= λΦk, k = 0, . . . , N − 1, (4.9)

which is posed on −∞< y<∞ with Φk → 0 as y → ±∞. Due to our specific choice of GM
exponents, it was shown in [22] (see also [47]) that (4.9) is explicitly solvable in the sense that
any discrete eigenvalue λ of the NLEP must be a root of the transcendental equation

μ0(0)
μk(λ)

− 9
2(3 − λ)

= 0, k = 0, . . . , N − 1. (4.10)

The N-spike steady state is linearly stable if the union of all the roots λ to (4.10) satisfy �(λ)< 0.
Since c0 = (1, . . . , 1)T whereas cT

0 ck = 0 for all 1 ≤ k ≤ N − 1 we conclude that unstable spectra
for these modes correspond to either synchronous or asynchronous instabilities of the spike
amplitudes, respectively. When the synchronous mode is linearly unstable, the theory predicts
that the perturbation in the amplitudes of the spikes will be in-phase. By contrast, for an
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asynchronous linear instability the sum of the perturbations of the spike amplitudes is zero.
This latter type of instability is also referred to as a competition instability since the amplitude
of some of the spikes increases at the expense of a decrease in the amplitude of other spikes
(cf. [22]). In [22], it is found that the synchronous instabilities occur through a Hopf bifurcation
whereas asynchronous instabilities occur through a zero-eigenvalue crossing. For both types
of instabilities, we can numerically calculate a threshold for Dv beyond which the particular
instability is triggered. In figure 7, we plot the Hopf bifurcation threshold for a one-spike solution
in the Db → ∞ limit for different values of τs ≥ 0, which illustrates the non-trivial dependence
on the coupling parameter K and bulk-bound timescale constant τb. In particular, increasing the
coupling strength K can both stabilize and destabilize the spike solution. By seeking parameter
values for which (4.10) admits a zero-eigenvalue crossing for 1 ≤ k ≤ N − 1, the numerically
calculated asynchronous instability thresholds shown in figure 8 for select values of Db illustrate
that the coupling parameter also has a stabilizing or destabilizing effect with respect to the
asynchronous instabilities for small and large values of K, respectively.

5. Dynamically active cells coupled by bulk diffusion
We first formulate the coupled PDE-ODE bulk-cell model of [26,28], as inspired by [23]. In the
two-dimensional bounded domain Ω with a reflecting boundary ∂Ω , we assume that there are m
dynamically active well-separated circular ‘cells’ Ωj of a common radius R0, centred at Xj ∈Ω for
j = 1, . . . , m. In the bulk region Ω \ ∪m

j=1Ωj, the autoinducer U(X, T) is assumed to satisfy

UT = DB�U − kB U , T> 0, X ∈Ω \ ∪m
j=1Ωj; ∂nX U = 0, X ∈ ∂Ω ; (5.1a)

and

DB ∂nX U = β1j U − β2j μ
1
j , X ∈ ∂Ωj, j = 1, . . . , m, (5.1b)
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Figure 9. Dynamically active cells (in cyan) in a two-dimensional domain. The green and red dots represent the signalling
chemicals in the cells, where only the red is secreted into the extracellular bulk region. (b) A zoom of the intracellular species,
the secretion of signalling molecules into the bulk and the feedback into the cells. (Online version in colour.)

where ∂nX is the outer normal derivative pointing into the bulk region. The dimensional bulk
diffusivity is DB > 0, while kB > 0 is the rate of degradation of the bulk signal. The Robin condition
(5.1b) on the cell membrane, with permeabilities β1j and β2j, models the influx and efflux of one
chemical species into and out of the jth cell. The intracellular ODE kinetics Fj for the n interacting
species μj ≡ (μ1

j , . . . ,μn
j )T within the jth cell is coupled to the bulk region from an integration

across the cell membrane. Defining e1 ≡ (1, 0, . . . , 0)T, this coupling has the form

dμj

dT
= kR μc Fj(μj/μc) + e1

∫
∂Ωj

(β1j U − β2j μ
1
j ) dSX, j = 1, . . . , m, (5.1c)

where kR > 0 is the dimensional intracellular reaction rate and μc > 0 is a typical value for μj.
A key feature in this PDE-ODE model (5.1) is that only one signalling chemical, labelled by μ1

j ,
can permeate the jth cell membrane with efflux parameter β2j. This chemical communicates with
spatially distant cells by diffusing through the bulk medium. The influx parameter β1j controls
the global feedback into the jth cell from the bulk diffusion field generated by all the cells. A
schematic diagram for the bulk-cell coupling is shown in figure 9 for n = 2 intracellular species.

In (5.1), it is assumed that the common radius R0 of the cells is small in comparison to the
domain length-scale L, and so we define ε≡ R0/L � 1. With the non-dimensionalization of (5.1)
as in [26,28], the dimensionless concentration U(x, t) in the bulk region satisfies

τ
∂U
∂t

= D�U − U, t> 0, x ∈Ω \ ∪m
j=1Ωεj ; ∂n U = 0, x ∈ ∂Ω ; (5.2a)

and
εD ∂nU = d1j U − d2j u1

j , x ∈ ∂Ωεj , j = 1, . . . , m, (5.2b)

where Ωεj ≡ {x | |x − xj| ≤ ε}. The bulk solution U is coupled to the intracellular dynamics by

duj

dt
= Fj(uj) + e1

ετ

∫
∂Ωεj

(d1j U − d2j u1
j ) ds, j = 1, . . . , m. (5.2c)

Here uj ≡ (u1
j , . . . , un

j )T represents the n species in the jth cell. The centres of the cells are assumed
to be well-separated in the sense that dist(xj, xk) =O(1) for j 
= k and dist(xj, ∂Ω) =O(1) as ε→ 0.
In (5.2), the key dimensionless parameters D, τ , d1j and d2j are defined by

D ≡ DB

kBL2 , τ ≡ kR

kB
, d1j ≡ ε

β1j

kBL
=O(1), d2j ≡ ε

β2jL

kB
=O(1). (5.3)

For small values of the reaction-time parameter τ , the intracellular reactions proceed slowly
relative to the time-scale of degradation of the bulk signal, and so little communication between
the cells can occur. For large values of the effective bulk diffusivity D, the cells are readily able
to synchronize their activities through the bulk medium and, in the well-mixed limit D → ∞,
the bulk signal becomes spatially homogeneous. By contrast, when D is small, communication
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between spatially distant cells is weak. In (5.3), the influx β1j and efflux β2j parameters are chosen
as O(ε−1) so as to ensure that there is an O(1) transport across the membrane of the small cells.

(a) Switch-like onset of intracellular oscillations: a Hopf bifurcation
By using strong localized perturbation theory [48] in the singularly perturbed limit ε→ 0, in
[26,28] steady-state solutions for (5.2) were constructed and the linear stability problem was
derived in the form of a nonlinear matrix eigenvalue problem. With Sel’kov intracellular kinetics,
it was shown in [26,28] that switch-like intracellular oscillations can emerge via a Hopf bifurcation
in parameter regimes where the cells, when uncoupled from the bulk medium, would otherwise
only have a stable steady state. The triggering of such diffusion-induced intracellular oscillations,
for a specific permeability set and a given spatial configuration of cells, is encapsulated in a phase
diagram in the τ versus D parameter space. We now briefly summarize this theory of [26,28] and
we provide two new results illustrating the theory.

Sel’kov intracellular kinetics, used as a conceptual model of glycolysis oscillations (cf. [30,49]),
involves two intracellular species uj = (u1

j , u2
j )T, and is given by

Fj = (Fj1, Fj2)T; Fj1 ≡ αju
2
j + u2

j (u1
j )2 − u1

j , Fj2 ≡ ζj(μj − [αju
2
j + u2

j (u1
j )2]). (5.4)

We fix μj ≡μ= 2 and ζj ≡ ζ = 0.15 for all cells, and choose αj large enough so that an isolated
cell with no influx (i.e. d1j = 0) has only a linearly stable rest state. With no influx, (5.2c) has the
dynamics duj/dt = Fj(uj) − 2πd2ju1

j e1/τ , where Fj is given in (5.4). This ODE system has only a
linearly stable steady-state and no limit cycle oscillations when (see fig. 2 of [28])

αj >−
μ2

j

χ2
j

+ 1
2ζj

⎡
⎢⎣−χj +

√√√√
χ2

j +
8ζjμ

2
j

χj

⎤
⎥⎦ , with χj ≡ 1 + 2πd2j

τ
, (5.5)

where μj = 2 and ζj = 0.15. In this way, intracellular oscillations that occur below in various
regions of the (D, τ ) plane arise only by the diffusive coupling of the cells through the bulk.

With Sel’kov kinetics (5.4), it was shown in §2 of [28] that for ε→ 0 there is a unique steady-
state solution to (5.2). In the outer region, where |x − xj| �O(ε), the steady-state bulk solution for
ε→ 0 is U ∼ −2π

∑m
i=1 AiG0(x; xi), where A ≡ (A1, . . . , Am)T solves the linear system(

I + 2πνG0 + νD P1 + 2πνD
τ

P2

)
A= −μνP2 e. (5.6)

Here ν ≡ −1/ log ε, P1 ≡ diag(1/d11, . . . , 1/d1m), P2 ≡ diag(d21/d11, . . . , d2m/d1m) and e ≡ (1, . . . , 1)T.
In the limit ε→ 0, it was shown in §2 of [28] that all of the discrete eigenvalues of the linearization
of this steady state are contained in the set Λ(M), defined by

Λ(M) ≡ {λ| detM(λ) = 0}, where M(λ) ≡ I + 2πνGλ + νD P1 + 2πνD
τ

P2K. (5.7)

We refer to (5.7) as the globally coupled eigenvalue problem (GCEP). In (5.6) and (5.7), Gλ is the
symmetric reduced-wave Green’s matrix, with entries (Gλ)ij ≡ Gλ(xi; xj) for i 
= j and (Gλ)jj ≡ Rλ(xj),
where Gλ(x; xj) is Green’s function, with regular part Rλ(xj), satisfying

�Gλ − (1 + τλ)
D

Gλ = −δ(x − xj), x ∈Ω ; ∂nGλ = 0, x ∈ ∂Ω ;

and Gλ(x; xj)−̃
1

2π
log |x − xj| + Rλ(xj) + o(1), as x → xj.

⎫⎪⎪⎬
⎪⎪⎭ (5.8)

In (5.7), the diagonal matrix K has entries (K)jj = (λ+ detJj)/(λ2 − λ trJj + detJj), where Jj is the
Jacobian of the Sel’kov kinetics Fj at the steady state.

The GCEP (5.7) depends on D, τ , the permeabilities d1j and d2j, for j = 1, . . . , m, as encoded
in the matrices P1 and P2, and the spatial configuration {x1, . . . , xm} of the cell centres within Ω
encoded in Green’s matrix Gλ. We remark that the diagonal matrix K in (5.7) also depends on all
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Figure 10. (a,b) HB boundaries in the (D, τ ) plane for a pattern of four equally-spaced cells on a ring of radius r0 with
an additional cell at the centre. (a) Identical cells with α = 0.93. (b) Now α= 0.78 for centre cell. (c–e) FlexPDE [50]
results computed from (5.2) for the intracellular component u1 and the bulk solution U when r0 = 0.5, D= 2 and τ = 0.65.
(c) Identical cells withα = 0.9 showing decaying oscillations. (d) Defective centre cell hasα= 0.78 and sustained oscillations
occur. (e) Contour plot of U at t = 400 for identical cells. Parameters: ε= 0.02, μ= 2, ζ = 0.15, d1 = 0.3 and d2 = 0.2.
(a) Identical cells withα = 0.93, (b) Defective centre cell withα = 0.78, (c) u1 identical cells, (d) u1 defective centre cell and
(e) U at t = 400 (identical cells). (Online version in colour.)

of these parameters through the steady-state solution. When Ω is the unit disk Green’s matrix
Gλ can be calculated analytically (cf. [28]). Any element λ ∈Λ(M) for which �(λ)> 0 provides
an approximation, valid as ε→ 0, for an unstable discrete eigenvalue of the linearization of the
steady state. Hopf bifurcation (HB) boundaries can be calculated by ensuring that the eigenvalue
with the largest real part satisfies detM(iλI) = 0.

Our first example, not considered in [28], is for a ring and centre cell pattern in the unit disk
that consists of four equally spaced cells on a ring of radius r0 concentric within the unit disk
with an additional cell at the centre of the disk. In figure 10a, we plot an HB boundary in the
(D, τ ) plane for a few ring radii r0 when the cells are all identical. Synchronous intracellular
oscillations for the cells on the ring are predicted inside the lobes shown in figure 10a. However,
as shown in figure 10b, by decreasing the Sel’kov parameter α for the centre cell to be closer
to the stability boundary in (5.5) for an isolated cell, this single ‘defective’ centre cell triggers
intracellular oscillations for the entire collection of cells in a larger region of the (D, τ ) parameter
space. These theoretical predictions are confirmed in the lower row of figure 10 where we show
full numerical results for the intracellular component u1 for the centre cell and the synchronous
ring cells, as computed numerically from the bulk-cell PDE-ODE system (5.2) using FlexPDE [50].
For the choice of parameters in the caption of figure 10, we observe that the lobes of instability
in the (D, τ ) parameter space are bounded. Qualitatively, with only five cells, as D becomes too
large the bulk signal is rapidly washed away from each cell, and there is an insufficient diffusive
gradient near the cells to trigger collective oscillations.

In our second example, not considered in [28], we take m = 50 non-overlapping cells of
radii ε= 0.02 that are randomly distributed in the unit disk and have identical Sel’kov kinetic
parameters and a common efflux parameter d2. The cell pattern is shown in figure 11b. We
consider the large D regime, given by D = D0/ν with D0 =O(1) and ν = −1/ log ε� 1, where
the challenging problem of finding roots to detM(iλI) = 0 can be reduced asymptotically to the
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much simpler scalar problem of determining a zero-crossing for one specific matrix eigenvalue
σ of Mc = σc (see proposition 5 of [28]). By exploiting this simplification, in figure 11a, we plot
a numerically computed HB boundary in the (τ , D0) plane when the cells have a common influx
parameter d1 = 0.8 and when the influx parameter is uniformly distributed on 0.4 ≤ d1 ≤ 0.8, but
where two cells are assigned the bounds of this interval in d1. From figure 11a, we observe that
when cell heterogeneity is introduced through the influx permeability there is a narrower range
of τ where intracellular oscillations occur. From the unbounded regions in figure 11a, we observe,
in contrast to the case for the ring and centre cell pattern shown in figure 10, that intracellular
oscillations will occur in the well-mixed limit D0 → ∞. Although the spatial gradient of the bulk
signal is very weak when D0 � 1, the presence of a large number of cells can sufficiently increase
the (roughly) spatially uniform level of the bulk signal so as to trigger collective oscillations of
the entire group of cells. This qualitative behaviour is known as quorum-sensing (see [27,28]
and the references therein), and its occurrence depends primarily on the number of cells and
the cell membrane permeabilities.

As shown in §3 of [28], an additional simplification for the large bulk diffusivity distinguished
limit D = D0/ν� 1, is that the time-dependent solution to the bulk-cell PDE-ODE model (5.2) can
be approximated by the following nm + 1 dimensional ODE-DAE system for U ≈ |Ω|−1 ∫

Ω U dx
and the intracellular species (see proposition 2 of [28]):

d
dt

U = − 1
τ

U − 2πD0

τ |Ω| eTb;
duj

dt
= Fj(uj) + 2πD0e1

τ
bj, j = 1, . . . , m, (5.9a)

where e ≡ (1, . . . , 1)T, e1 ≡ (1, 0, . . . , 0)T and b ≡ (b1, . . . , bm)T solves the linear algebraic system(
I + D0P1 + 2πν GN

)
b = U e − P2 u1, (5.9b)

where u1 ≡ (u1
1, . . . , u1

m)T. Here GN is the Neumann Green’s matrix with entries (GN)ij ≡ GN(xi; xj)
for i 
= j and (GN)jj ≡ RN(xj), where GN(x; xj), with regular part RN(xj), satisfies

�GN = 1
|Ω| − δ(x − xj), x ∈Ω ; ∂nGN = 0, x ∈ ∂Ω ; (5.10a)

and

GN(x; xj)−̃
1

2π
log |x − xj| + RN(xj) + o(1), as x → xj;

∫
Ω

GN dx = 0. (5.10b)

By using the explicit formula for GN for the unit disk (cf. [28]), the ODE-DAE system (5.9) is solved
numerically for Sel’kov kinetics at the three labelled points in the phase diagram of figure 11a for
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the case where the cells are heterogeneous due to the random influx parameter d1. The results
shown in figure 12 for three specific cells confirm the theoretical prediction based on figure 11a.

6. Discussion
The wide variety of specific cell signalling problems that involve the binding of surface receptors
(cf. [1–4,11,12,14,15]) has provided a recent impetus for studying pattern-forming properties
associated with novel classes of RD systems that involve the coupling of a linear RD system
in the interior of a multi-dimensional domain to nonlinear diffusive processes that occur in a
thin strip that protrudes from the domain boundary. In this context, the bulk-membrane system
derived in (2.8) of §2 arises from the asymptotic limit of a vanishing width of this thin strip,
together with a certain scaling law for the membrane-bound species. However, the analysis of
pattern forming properties for this reduced system (2.8) is still rather challenging owing, not only
to the complexity of the geometry, but also to the fact that steady-state solutions are in general
not spatially uniform, even in radially symmetric domains. As a result, this prohibits applying
a standard Turing-type linear stability analysis that has been used so successfully to analyse
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pattern formation in more conventional RD systems where spatially uniform steady-states
often occur.

For a coupled bulk-membrane RD system on a circular bulk domain, in §3a, we have outlined
the analysis in [21] for the construction of radially symmetric spatially non-uniform steady
states and the derivation of amplitude equations characterizing the weakly nonlinear dynamics
of spatio-temporal patterns near Hopf and pitchfork bifurcation points associated with the
linearization of this non-uniform base state. By assuming equal diffusion rates for the membrane-
bound species, our results have shown that the coupling via a passive bulk diffusion process
can provide an alternative destabilizing mechanism in comparison to the usual diffusion-driven
instability paradigm. Although we have only illustrated the weakly nonlinear analysis of [21]
for the Brusselator kinetics, the normal form analysis of [21] can be readily implemented for
an arbitrary reaction kinetics on the boundary of a disk. In §3b, we have numerically explored
the formation of rotating waves in the highly nonlinear regime, away from O(2) symmetric Hopf
bifurcations. These rotating wave solutions are not amenable to study through a weakly nonlinear
analysis as they originate from a secondary instability, behind the ‘trivial’ Hopf bifurcation
associated with radially symmetric oscillations. However, the situation is rather different for
models where the total concentration of species is assumed to remain constant, which is a
usual hypothesis of cell polarization models in both standard [51,52] and bulk-membrane [2–4]
versions. In a recent study on a mass-conserved bulk-membrane RD for intracellular oscillations
and polarization [21], which also assumed circular bulk geometry, a rather wide parameter regime
was found that allowed the formation of rotating and standing waves as primary instabilities.
This was observed as a direct consequence of mass conservation, selecting spatial modes which
naturally redistribute the total mass of species, thereby excluding the trivial (radially symmetric)
mode. Hence, it would be worthwhile to extend the weakly nonlinear theory of [21], as outlined
in §3a, to the case of O(2) symmetric Hopf bifurcations in mass-conserved bulk-membrane RD
models with periodic boundary conditions. In doing so, the interactions of rotating and standing
waves near onset and their stability properties can be analysed. For this task, the normal form
classification from [40] will be particularly useful. In another direction, it would be worthwhile
to extend the weakly nonlinear theory of [21] to realistic geometries in two and three dimensions
such as ellipses, cylinders, spheres and ellipsoids.

For a bulk-membrane RD system with GM activator-inhibitor membrane kinetics on the
boundary of a two-dimensional disk, we have highlighted some results in [22] for the existence
and linear stability of localized membrane-bound spike patterns that occur in the singularly
perturbed limit of a large diffusion ratio for the two membrane species. Although the analysis
in §4 was presented only for a specific choice of the exponents of the nonlinear terms in the GM
model, for which the stability analysis can be simplified, the analysis in [22] was done for an
arbitrary GM exponent set. We anticipate that a similar analysis in a two-dimensional disk can
be done for other membrane kinetics such as the Schnakenberg and Brusselator models. One
main challenge, however, is to analyse similar bulk-membrane problems in a three-dimensional
setting, whereby localized spot patterns occur on the boundary of a spherical domain. In this
three-dimensional context, it would be interesting to determine how a spatially inhomogeneous
production of signalling chemicals inside the domain can influence the location where stable
localized structures can be formed on the domain boundary. Finally, more elaborate bulk-
membrane models involving time-dependent domain growth due to either chemical signalling
or chemo-mechanical stresses pose considerable challenges for an analytical characterization of
pattern formation properties.

For the bulk-cell PDE-ODE system (5.2), the use of Sel’kov intracellular dynamics has provided
a clear conceptual model for the sudden emergence, owing to a Hopf bifurcation, of intracellular
oscillations as mediated by an autoinducer field. In the absence of bulk coupling, the Sel’kov ODE
dynamics is an example of a conditional oscillator, in that the kinetics parameters can be tuned to
be relatively close to the critical values where limit cycle oscillations can occur. The introduction
of cell-cell coupling through the bulk diffusion field can then effectively change the marginal
stability boundary, leading to the emergence of intracellular oscillations. Intracellular oscillations
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have also been observed in several specific biological systems (cf. [32–34]). From the viewpoint
of applications, it would be interesting to analyse (5.1) for intracellular kinetics that are based on
detailed biologically realistic models of signalling pathways, such as those of [53,54] for glycolytic
oscillations. We remark that the bulk-cell model (5.2) readily allows for including any parameter
values, such as kinetic rate constants and cell membrane permeabilites, that can be extracted from
biological measurements. Extensions of the analysis of the two-dimensional model (5.2) to either
a three-dimensional setting, or to allow for two bulk diffusion fields, should be undertaken.

One challenging open numerical issue in the analysis of bulk-cell models concerns developing
well-conditioned numerical techniques to implement the linear stability analysis based on
the root-finding condition det(M(λ)) = 0 for the GCEP given in (5.7) for a large number of
randomly placed cells with arbitrary permeabilities. Solution strategies for such nonlinear matrix
eigenvalue problems are typically restricted to matrices with special structure, such as Hermitian
matrices, matrices with low-rank dependence on λ, or matrices that are quadratic or rational
in λ (cf. [55]).
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